
10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

1/128

Commerce Cloud Endless Aisle 2.5.4
Contents

1. Commerce Cloud Endless Aisle 2.5.4
1.1. Commerce Cloud Endless Aisle 2.5.4
1.2. Endless Aisle End of Support FAQ
1.3. Commerce Cloud Endless Aisle in Store Wi-Fi Requirements
1.4. Commerce Cloud Endless Aisle Supported Devices
1.5. Commerce Cloud Endless Aisle Technology Stack
1.6. Commerce Cloud Endless Aisle App Components
1.7. Commerce Cloud Endless Aisle and MVC
1.8. Caching in Commerce Cloud Endless Aisle
1.9. How Commerce Cloud Endless Aisle App Access Works
1.10. Set Up Your Commerce Cloud Endless Aisle Development
 1.10.1 Commerce Cloud Endless Aisle Development Requirements

1.10.2. Apple Developer License
1.10.3. Approving a Development Certi�cate Request
1.10.4. Importing the Apple Distribution Certi�cate
1.10.5. Installing Xcode
1.10.6. Install Titanium CLI
1.10.7. Installing Titanium SDK/CLI speci�c versions
1.10.8. Ensure You Have the Supported Versions of Commerce Cloud Endless Aisle Development Software

1.11. Perform Data Setup and Integration
1.11.1. Downloading Commerce Cloud Endless Aisle Source Code

1.11.1.1. Commerce Cloud Endless Aisle App Source Code
1.11.1.2. Commerce Cloud Endless Aisle API Source Code
1.11.1.3. Commerce Cloud Endless Aisle Module Source Code

1.11.2. Importing the Commerce Cloud Endless Aisle Project
1.11.3. Updating the Cartridge Path
1.11.4. Adding a Commerce Cloud Endless Aisle Module to Administration Role
1.11.5. Modifying Your Storefront
1.11.6. Generate Site Import Data
1.11.7. Import Site
1.11.8. Enabling Commerce Cloud Endless Aisle CalculateCart Hooks
1.11.9. Enabling Multi-Currency in Commerce Cloud Endless Aisle
1.11.10. Update GetImage on Server Side

1.12. Set Up Business Manager for Commerce Cloud Endless Aisle
1.12.1. Commerce Cloud Endless Aisle Feature Switches
1.12.2. Ensure Product UPCs Are Searchable in Commerce Cloud Endless Aisle
1.12.3. Con�guring OCAPI Settings for Commerce Cloud Endless Aisle
1.12.4. Setting Up OCAPI Oauth for Commerce Cloud Endless Aisle
1.12.5. Importing Commerce Cloud Endless Aisle Settings
1.12.6. Setting Up Payment for Commerce Cloud Endless Aisle
1.12.7. Specifying General Commerce Cloud Endless Aisle App Settings in Business Manager
1.12.8. Setting Up Analytics for Commerce Cloud Endless Aisle
1.12.9. Setting Up Images for Commerce Cloud Endless Aisle
1.12.10. Setting Up Devices for Commerce Cloud Endless Aisle
1.12.11. Setting Up Commerce Cloud Endless Aisle to Run in Kiosk Mode
1.12.12. Setting Up Error Logging for Commerce Cloud Endless Aisle
1.12.13. Setting Up Product and Shipping Price Overrides in Commerce Cloud Endless Aisle
1.12.14. Setting Up Catalog Con�guration for Commerce Cloud Endless Aisle
1.12.15. Setting Up Commerce Cloud Endless Aisle Checkout
1.12.16. Setting Up Commerce Cloud Endless Aisle App Timeouts
1.12.17. Setting Up Commerce Cloud Endless Aisle Sales Reports
1.12.18. Setting Up Address Suggestion for Commerce Cloud Endless Aisle
1.12.19. Setting Up Alternate Shipping for Commerce Cloud Endless Aisle
1.12.20. Adding a Commerce Cloud Endless Aisle App Con�guration to Business Manager

1.13. Create Stores and Add Associates in Commerce Cloud Endless Aisle
1.13.1. Update Store App Role Premissions
1.13.2. Creating a Store for Commerce Cloud Endless Aisle
1.13.3. Creating a BM User for Each Store for Commerce Cloud Endless Aisle
1.13.4. Specifying the Business Manager Credentials for a Commerce Cloud Endless Aisle Store
1.13.5. Permission Groups for Commerce Cloud Endless Aisle Associates
1.13.6. Managing Permissions for Commerce Cloud Endless Aisle Store Associates
1.13.7. Creating, Assigning, Modifying Commerce Cloud Endless Aisle Store Associates
1.13.8. Load Associate Credentials via Batch
1.13.9. Integrate in Real Time to Validate Associate Credentials
1.13.10. Configure Endless Aisle for Unified Authentication

1.14. Set Up the Commerce Cloud Endless Aisle App
1.14.1. Specifying Commerce Cloud Endless Aisle App Settings
1.14.2. Specifying Tablet Settings for Commerce Cloud Endless Aisle
1.14.3. Specifying Address Form Per Location for Commerce Cloud Endless Aisle
1.14.4. Display Store Inventory in the Commerce Cloud Endless Aisle App
1.14.5. Country, Language, Currency, and Price Books in Commerce Cloud Endless Aisle

1.15. Commerce Cloud Endless Aisle Payment Devices
1.15.1. Enabling Payment in Commerce Cloud Endless Aisle Through Adyen Device
1.15.2. Enabling Payment in Commerce Cloud Endless Aisle Through Verifone Device
1.15.3. Enabling Commerce Cloud Endless Aisle Payment Through the Web
1.15.4. Test the Commerce Cloud Endless Aisle Payment Device

1.16. Create a Payment Device Module
1.16.1. Load the Native Module
1.16.2. Accept Payment

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

2/128

1.16.3. Approve Payment
1.16.4. Cancel Payment
1.16.5. Cancel Server Transaction
1.16.6. Handle Errors
1.16.7. Support Manual Card Number Entry
1.16.8. Support Payment with Gift Cards
1.16.9. Display Whether the Payment Device Is Connected
1.16.10. Configure Device in Admin Dashboard
1.16.11. Support Barcode Scanner

1.17. Commerce Cloud Endless Aisle Reports and Analytics
1.17.1. Track Orders in Commerce Cloud Endless Aisle
1.17.2. Track Price Overrides in Commerce Cloud Endless Aisle
1.17.3. Generating GMV Reports for Commerce Cloud Endless Aisle Sales
1.17.4. Display Store Inventory in the Commerce Cloud Endless Aisle App
1.17.5. Using Google Analytics with Commerce Cloud Endless Aisle
1.17.6. Viewing Commerce Cloud Endless Aisle Sales Reports

1.18. Coding Guidelines for Commerce Cloud Endless Aisle
1.18.1. Commerce Cloud Endless Aisle Naming Conventions
1.18.2. Alloy Framework
1.18.3. UI View Types
1.18.4. Global Variables
1.18.5. Lifecycle for Views
1.18.6. Memory Management
1.18.7. Listener Types
1.18.8. Promises
1.18.9. Logging
1.18.10. App Configurations
1.18.11. Themes
1.18.12. Localization
1.18.13. Use Endless Aisle with the Storefront Reference Architecture

1.19. Customize the Commerce Cloud Endless Aisle App
1.19.1. Change the Look of the Commerce Cloud Endless Aisle App
1.19.2. Setting Category Images for the Commerce Cloud Endless Aisle Home Page
1.19.3. Enable Address Verification in Commerce Cloud Endless Aisle
1.19.4. Customize Emails Sent by Commerce Cloud Endless Aisle
1.19.5. Add Custom Data to Existing Models in Commerce Cloud Endless Aisle
1.19.6. Debug the Commerce Cloud Endless Aisle App
1.19.7. Commerce Cloud Endless Aisle App Logging Categories
1.19.8. Running Commerce Cloud Endless Aisle in the Simulator

1.20. Test the Commerce Cloud Endless Aisle App
1.20.1. Set Up Appium
1.20.2. Run Tests in Appium
1.20.3. Modify and Create Automated Tests

1.21. Deploy the Commerce Cloud Endless Aisle App
1.21.1. Apply for an iOS Developer Enterprise Account
1.21.2. Set Up the iOS Developer Enterprise Account
1.21.3. Install the Certificate in the Keychain
1.21.4. Create the .Ipa File
1.21.5. Create the Manifest.Plist File

1.22. Pairing the Payment Device with the iPad
1.23. Pairing Printer with iPad
1.24. Run the Commerce Cloud Endless Aisle App in Kiosk Mode
1.25. Commerce Cloud Endless Aisle Device Logs
1.26. Storefront API Reference

1.26.1. Deprecated Storefront APIs
1.26.2. Storefront API Calls
1.26.3. EAAccount-AgentLogin
1.26.4. EAAccount-AgentLogout
1.26.5. EAAccount-ChangePassword
1.26.6. EAAccount-CreateBasket
1.26.7. EAAccount-EmailProductList
1.26.8. EAAccount-GetPermissions
1.26.9. EAAccount-LoginOnBehalf
1.26.10. EAAccount-Search
1.26.11. EAAccount-SetDataOnNewSession
1.26.12. EAAccount-ValidateAssociateExists
1.26.13. EACheckout-AbandonOrder
1.26.14. EACheckout-ApplyCreditCard
1.26.15. EACheckout-ApplyGiftCard
1.26.16. EACheckout-AuthorizeCreditCard
1.26.17. EACheckout-AuthorizeGiftCard
1.26.18. EACheckout-AuthorizePayment
1.26.19. EACheckout-GiftCardBalance
1.26.20. EACheckout-RemoveCreditCard
1.26.21. EACheckout-RemoveGiftCard
1.26.22. EACheckout-StartWebPayment
1.26.23. EACheckout-StoreWebOrder
1.26.24. EAConfigs-GetCFGSettings
1.26.25. EAOrder-OrderHistory
1.26.26. EAOrder-SaveSignature
1.26.27. EAOrder-SendEmail
1.26.28. EAReports-AssociatesRanking
1.26.29. EAReports-ItemsSold
1.26.30. EAReports-Sales
1.26.31. EAReports-StoresRanking
1.26.32. EAStore-GetCountriesStates

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

3/128

1.26.33. EAStore-ValidateDevice
1.26.34. EAUtils-GetAuthenticationToken
1.26.35. Verifone-DecryptTrackData
1.26.36. Verifone-ActivateDevice
1.26.37. Verifone-DecryptCardData

1.27. Endless Aisle and iOS 15

Commerce Cloud Endless Aisle 2.5.4

The Endless Aisle reference app is at End of Support

Note: Endless Aisle 2.5.4 is the �nal version of the reference app that is being made available to the customer and no maintenance or support is available for any version of
the reference app after September 30, 2021.

Note: Documentation for Endless Aisle may not re�ect the current state of the app for a retailer and may not be applicable.

1. Commerce Cloud Endless Aisle 2.5.4

Endless Aisle is a reference app that uses customer, product, and
inventory data from Salesforce B2C Commerce to enable store
associates to access this information to complete
sales in the
store. Associates can use the app to find additional product
styles and sizes, make recommendations based on buyer preferences,
perform price and shipping overrides,
look at customers' wish
lists, and checkout customers.

Provided with the Endless Aisle app are the following:

Business Overview

release notes

documentation

wireframes and functional specifications

code changes summary for each release

source code

Customizing the Endless Aisle app for your organization requires
doing the following:

1. Set Up
Your Endless Aisle Development Environment.

2. Perform Data
Setup and Integration

3. Set Up Business
Manager for Endless Aisle

4. Create
Stores and Add Associates

5. Set Up the Endless Aisle
App

6. Set Up Endless Aisle
Payment Device

7. Doing the
Customization

Personal Information and Security

Because
PII data is never stored on the device that’s running the
Endless Aisle Reference app, there is no need to be PCI/DSS
compliant. Instead, credit card track data is encrypted
on the
payment device. However, customer data does go to the Commerce
Cloud.

As a result of this approach that isolates PII
from the Endless Aisle Reference app, merchants are not
exposed to PCI audits. Instead, the magnetic card reader and
its provider are
subject to a PCI audit.

As a security
measure, all associate, customer, basket, and related
information is flushed on customer logout, associate logout,
application timeout and application close. In addition,
Salesforce advocates MDM security, such as geo-fencing, where
if the device is taken from the building, everything gets
erased from it. Another measure is to restrict the device to
kiosk mode, in which you can open the app, but can’t start
Safari.

Note: If you enable payment through the web and are
running on iOS 9.3 or later, in order to be PCI compliant, you
must disable the Scan Credit Card feature in Safari. On the
iPad, go to Settings > Safari > Passwords & Autofill
> Credit Cards> Slider off.

Related Links

Endless Aisle in Store Wi-Fi Requirements

Endless Aisle Supported Devices

Set Up Your Endless Aisle Development Environment

jearl
Cross-Out

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

4/128

© Copyright 2000-2021, salesforce.com inc. All rights reserved. Various trademarks held by their respective owners.

1.2. Endless Aisle End of Support FAQ

In 2018, Endless Aisle transitioned to maintenance mode with no feature enhancements.
Since then, only high-priority bug fixes and security updates were added to the reference
app. The Endless Aisle reference app is now at End of Support. The final version is
Endless Aisle 2.5.4. This version supports iOS 14.4. If you want Endless Aisle to support
iOS 15,
you need to upgrade versions of the supporting software to the current version, and
make modifications to the code as required.

Updated March 11, 2021

What is End of Support?

Salesforce Commerce Cloud no longer maintains, supports, or enhances the Endless Aisle product. Salesforce Commerce Cloud no longer maintains compatibility with OCAPI or
validation of iOS versions.

Can I continue to use the reference app?

Yes, you can continue using the Endless Aisle reference app, but all maintenance, support, and enhancements are your sole responsibility. Salesforce understands that you
invested a lot to provide amazing experiences for your customers.

Can I still use the Endless Aisle APIs with my custom application?>

Yes, you can have the same API access that you have now.

What is the timeline for end of life support?

February 2021

Validation of iOS version 14.4

Bug fix available that allows customers to upgrade to OCAPI version 19.1

September 2021

New Endless Aisle source code repository is available in Github. The repository allows all modules in the Endless Aisle repository to be built and compiled independently.

No maintenance or support is provided.

No validation of iOS versions

Why is this happening?

Endless Aisle has been in maintenance mode since 2018. Now more than ever, you must provide great solutions to your shoppers. Partners who are focused on and specialize in
store solutions can help you deliver in this increasingly dynamic store space with speed and flexibility.

What happens after the End of Support date?

Salesforce Commerce Cloud no longer maintains, supports, or enhances the Endless Aisle reference app. Salesforce Commerce Cloud no longer maintains compatibility with
OCAPI or validation of iOS versions.

You can download the updated file and have complete control of the source code for Endless Aisle. You can continue to build, change, maintain, and use the source code for the
Endless Aisle reference app.

Is there a replacement product?

Replacements for Endless Aisle are third-party software solutions available through Salesforce partners like:

PredictSpring

MadMobile

NewStore

Tulip

Proximity Insights

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

5/128

Updated March 11, 2021

How do I accommodate the deprecation of Adyen classic libraries?

The Adyen module code is available in the ea-modules repository. Use
the module code as a reference to make the modifications
required to move to the Terminal API. The
module may not be
required and the calls to the Terminal API can be made in the
app. See Deprecation of classic libraries.

Next Steps

February:

You can apply a known fix that allows you to move to OCAPI 19.1 with the B2C Commerce 21.1 release. Without this fix, you must stay on OCAPI version 18.1. API access
remains available. The supported API versions are subject to the OCAPI versioning and depreciation policy
OCAPI versions 15.x and 16.x will be retired on March 31,
2021.

Validation of iOS version 14.4. iOS versions beyond iOS version 14.4 aren’t validated.

September:

Salesforce updates the Endless Aisle source code repository for building and recompiling all the modules included in Endless Aisle. The updated repository is independent
of Commerce Cloud. To change your existing implementation of Endless Aisle, you can download the last update file of the reference app from Github. Salesforce provides
no maintenance or support for this file.

After End of Support:

Customers can download the repository for source code and continue to use Endless Aisle, though Salesforce provides no maintenance or support.

Retailers using Endless Aisle can determine whether to replace Endless Aisle with a third-party solution.

Moving to a different third-party solution is a new implementation. Salesforce offers no migration path.

Where can I ask additional questions?

Contact your Salesforce account representative with any questions.

1.3. Commerce Cloud Endless Aisle in Store Wi-Fi Requirements

Salesforce recommends the following for in store Wi-Fi:

Download speed: 5 Mbps or greater

Upload speed: 2 Mbps or greater

Signal strength of 25 db to 40 db SNR

Ping/latency minimum of 200 ms

To determine network performance on the iPad, use an app like Speedtest by Ookla or SpeedSmart by VeeApps.

Related Links

Endless Aisle Supported Devices

Endless Aisle Technology Stack

Endless Aisle App Components

Endless Aisle and MVC

Caching in Endless Aisle

How Endless Aisle App Access Works

1.4. Commerce Cloud Endless Aisle Supported Devices

Endless Aisle runs on or supports the following devices:

Note: For
specific firmware and library versions, see the README.md file in the
Endless Aisle app code.

https://docs.adyen.com/point-of-sale/classic-library-deprecation
https://documentation.b2c.commercecloud.salesforce.com/DOC2/index.jsp?topic=%2Fcom.demandware.dochelp%2FOCAPI%2Fcurrent%2Fusage%2FVersioningAndDeprecationPolicy.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

6/128

iPad (iOS)

Verifone PAYware mobile e335: tested with XPI 8.20J and XPI 8.41A
firmware

Verifone e355 with Verifone firmware

Verifone e355 with Adyen software: supports both chip & PIN and
swiping with collecting signature in the app

Verifone VX680 with Adyen software: supports both chip & PIN and
swiping with collecting signature on the device

Verifone VX820 with Adyen software

Verifone P400 with Adyen software

Verifone e285 with Adyen software

Epson printer models TM-P60, TM-T70, TM-P60ii

Related Links

Endless Aisle in Store Wi-Fi Requirements

Endless Aisle Technology Stack

Endless Aisle App Components

Endless Aisle and MVC

Caching in Endless Aisle

How Endless Aisle App Access Works

1.5. Commerce Cloud Endless Aisle Technology Stack

The development components for Endless Aisle include:

Operating
system

The host operating system is iOS. The Endless Aisle app can
run on current versions of iOS.

Titanium
Titanium Mobile SDK is the base of the Endless Aisle
app. It’s an application framework that is written in the native
language of the supported platforms. You
interact with Titanium
Mobile SDK using JavaScript APIs and modules that you can add to
your app. Common platform modules expose native features. You
can
also create custom modules to extend the Titanium
framework.

Within Titanium there is a JavaScript runtime,
which lets you execute JavaScript code within the app. There are
native modules that let you interact with native
components
that you can only access through Objective-C, like the address
book and calendar. There is also a different native-to-JavaScript
Bridge for each
supported platform, including Android, Blackberry,
and iOS, The JavaScript runtime makes calls directly to the
Objective-C side using the JavaScript Bridge.

Alloy
Alloy provides a model-view-controller framework. Alloy
uses Titanium Mobile SDK to abstract the creation of UI
components. In order to implement the MVC,
Alloy relies on
Backbone.js and Underscore.js.

Alloy compiles into
JavaScript to create a standard Titanium mobile app. All the sync
adapters are definitions of the models. Models are mixed in with
sync
adapters, so you can reuse the sync adapters across multiple
models.

Because it's multi-platform, different platforms
support different styles and display sizes. Within an app, there
can be different code to support different
platforms. When Alloy
compiles code for a specific platform, it removes any code that is
specific to a different platform.

Views and styles are
merged with controller code to generate pure JavaScript. Views are
converted into widgets. Styles are applied on those widgets.

Backbone.js Backbone.js is the basis for model events. It’s also the
basis for the sync adapters. Events themselves are a part of
Backbone. For example, client side validation
is a built-in
feature of backbone. You can listen for changes on a model,
whether a basket, a product, or a product line item. You can also
listen for changes on
a nested attribute, for example, variation
values like size or color. When the app shows the product
detail page and the customer selects a color, that’s a
change in a
nested attribute. You can then filter by variant so that you can
update prices or available sizes. It’s a completely consistent and
convenient way to
update model view changes. Backbone has one
dependency – Underscore.js.

Underscore.js Underscore.js provides common functions for objects,
arrays, collections, events, and functions across browsers and
other JavaScript environments. For
example, if you want to take
all product line items and get a price, you could use map() over
the collection of product line items to map into an array of
prices.
You could use filter() to look for a matching set of
objects. There are also array functions that mean you don’t have
to write a bubble sort. There are also some
advanced JS features
too. For example, bind() lets you have a function always operate
on a specific object. You can use wrap() to specify other
functions to
execute every time either before or after a
particular function.

Endless Aisle
app code

At the highest level is all the custom code. This is what
you can customize.

Related Links

Endless Aisle in Store Wi-Fi
Requirements

Endless
Aisle Supported Devices

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

7/128

Endless Aisle App
Components

Endless Aisle and
MVC

Caching in Endless
Aisle

How Endless Aisle
App Access Works

1.6. Commerce Cloud Endless Aisle App Components

Endless Aisle uses the following components:

Open
Commerce
APIs

The Endless Aisle Reference app uses APIs that were built
on top of OCAPI. These APIs handle all cookie interaction, etags,
and response caching and are
somewhat similar to the Salesforce B2C Commerce Script APIs, where on the product model it's
possible to filter based on the variation values. The APIs contain
refinement code for product search, variation selection, product
set, product bundle, and image handling. Because most of that
functionality is built in, you don't
have to access OCAPI
directly. Instead, you use the objects. The APIs also handle
faults and errors. You can see what the server returns and act
upon it. OCAPI
has a built in JSON path, so it can tell you if a
certain field failed validation.

Storefront
APIs

The Storefront APIs implement features not available in
OCAPI. For example associate login and price adjustment are not
applicable to web-based storefronts
and therefore are not included
in OCAPI. You only need to access pipelines or controllers if you
want to customize the Storefront APIs. The APIs use pipelines and
controllers to expose RESTful services. They share the same
customer, basket, and session cookies as OCAPI.

Custom
Modules

Modules are a light JS wrapper that let the app access
native functionality that isn't built into the platform itself.
They include:

Verifone module

Adyen module

Epson printer module

Ti.Paint - off the shelf module from Titanium marketplace to capture
signature. Source https://github.com/appcelerator-archive/ti.paint

Google Analytics module - source https://github.com/benbahrenburg/Ti.GA

Log Capture module - for capturing exceptions in the application. Source
http://gitt.io/component/yy.logcatcher

WebDialog module - for pay through web support. Source https://github.com/appcelerator-modules/titanium-web-dialog

Swiss Army Utils module - for redirecting console logs to
a file

Barcode Scanner module - for capturing barcodes with the
iPad camera

Related Links

Endless Aisle in Store Wi-Fi
Requirements

Endless
Aisle Supported Devices

Endless Aisle Technology
Stack

Endless Aisle and
MVC

Caching in Endless
Aisle

How Endless Aisle
App Access Works

1.7. Commerce Cloud Endless Aisle and MVC

An understanding of how MVC architecture was implemented in the app is
especially important.

For each area of functionality you intend to modify, you should be able
to identify:

Styles

Models

Views

Controllers

UI events

Model events

OCAPI calls

Storefront calls

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/https://www.salesforce.com/company/privacy/
https://github.com/appcelerator-archive/ti.paint
https://github.com/benbahrenburg/Ti.GA
http://gitt.io/component/yy.logcatcher
https://github.com/appcelerator-modules/titanium-web-dialog

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

8/128

As an example, the UI in the Endless Aisle reference app contains
customer search. There are three files that create each portion of the UI of
the app. For customer lookup, the files
are:

view – app/views/customerSearch/search.xml

styles – app/styles/customerSearch/search.tss

controller – app/controllers/customerSearch/search.js

To create the app, Titanium and Alloy expect at least one of the three
files (.xml, .tss, .js) to exist, for all three files to be at the same
relative level in the source tree, and all three files
to have the same
name (except for the file extension).

XML app/ views/ customerSearch/ search.xml

TSS app/ styles/ customerSearch/ search.tss

Controller app/ controllers/ customerSearch/ search.js

Related Links

Endless Aisle in Store Wi-Fi
Requirements

Endless
Aisle Supported Devices

Endless Aisle Technology
Stack

Endless Aisle App
Components

Caching in Endless
Aisle

How Endless Aisle
App Access Works

1.8. Caching in Commerce Cloud Endless Aisle

The levels or types of caching that are relevant in Endless Aisle
are:

Client side caching

OCAPI caching

Client-Side Caching

Client-side caching is done
for product_search, product, store and category OCAPI requests in Endless
Aisle. The reason for this cache is to have the app respond faster by
avoiding
going to the server to get data for things that don't change
often.

Endless Aisle doesn't cache the request to get
availability, prices, and promotions when you click a variant or
quantity on the product detail page. This is so that when you add an item
to the cart you know the current correct price and inventory, based
on OCAPI cache settings.

Cache is stored in an in-application SQLite
database and can be cleared in the Admin Dashboard in the Endless Aisle
app.

You can turn off caching altogether in user.js with the
storefront.enable_http_cache and ocapi.enable_http_cache settings. By
default they are set to true. Changing this to false
affects the
performance of the app; when going to a search or product detail page for
the second or subsequent time, the app makes a request to the server
every time instead of
using local cache for the second or subsequent
request with the same URL. OCAPI caching still occurs if client-side
caching is disabled.

The timeout is driven by the Cache-Control
max-age in the response header, which comes from the OCAPI cache_time
settings described in the OCAPI caching section.

OCAPI Caching

OCAPI caching is server side
caching that occurs when OCAPI requests are made from the Endless Aisle
app.

The cache timeout is driven by the cache_time set in the OCAPI
Shop settings for the site.

To set the
cache_time:

1. Select Administration > Site
Development > Open Commerce API Settings.

2. Select Shop.

3. Select your site.

4. Specify the value for each instance of cache_time.

Note: You should have first copied the contents of the file that
contains the default OCAPI setting for Endless Aisle from
int_ocapi_ext_core/config/EA_OCAPI_Shop_Settings.json.

Clear Cache

In the Endless Aisle app, in the
Admin Dashboard Configuration tab, when you tap Clear Cache, the app
deletes the locally stored catalog and product data from the
iPad.

Related Links

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

9/128

Endless Aisle in Store Wi-Fi
Requirements

Endless
Aisle Supported Devices

Endless Aisle Technology
Stack

Endless Aisle App
Components

Endless Aisle and
MVC

How Endless Aisle
App Access Works

1.9. How Commerce Cloud Endless Aisle App Access Works

When the Endless Aisle app starts, the associate must log in to access
this app. Authentication requires:

The associate's employee number

The associate’s code (POS code)

When the associate enters their credentials, Commerce Cloud must
validate the credentials.

Commerce Cloud uses the store number from the app configuration to
locate the proper store ID in the custom object storeAssociates.

Using the employeeID (a.k.a employee number) entered by the employee
at the login prompt, Commerce Cloud locates the specific associate in
the store employees.
Commerce Cloud retrieves the hashed associate's
code and the salt for the specific employee.

Commerce Cloud takes the POS code entered by the employee, adds the
salt to it, and hashes it using SHA512 hash (pos code + salt). Commerce
Cloud compares the hash it
just calculated to the one stored on the
employee record. If they match, the credentials are good. If they don't
match, the credentials are bad.

On app startup and associate login, the Business Manager username and
password are put onto the session:

1. Commerce Cloud uses the store number to retrieve the Business
Manager username and password from the storeCredentials custom
object.

2. Commerce Cloud tries to log in that Business Manager user.

3. If the login succeeds, the app continues.

4. If the login doesn't succeed, an error is reported in the app, and
the credentialsExpired flag gets set on that storeCredentials custom
object.

Related Links

Endless Aisle in Store Wi-Fi
Requirements

Endless
Aisle Supported Devices

Endless Aisle Technology
Stack

Endless Aisle App
Components

Endless Aisle and
MVC

Caching in Endless
Aisle

1.10. Set Up Your Commerce Cloud Endless Aisle Development Environment

You can install the components needed for your development environment separately.
Alternatively, you can install Xcode by visiting the Apple App Store, at
https://developer.apple.com/download/. You install Titanium CLI by visiting axway.com.

Note: Salesforce B2C Commerce provides these instructions as a convenience
and can't guarantee that third party processes will remain the same as
the steps outlined in this
document. For specific firmware and library
versions, see the README.md file in the Endless Aisle app code.

1. Review the Endless Aisle Development Environment Requirements and the
Endless Aisle App Source
Code.

2. Apple Developer License.

3. Approve
Development Certificate Requests.

4. Import
the Apple Distribution Certificate.

5. Install Xcode

6. Install Titanium CLI.

7. Install the
Titanium SDK from a Terminal.

8. Ensure You Have Supported Versions of Endless Aisle Development
Software.

The next process is to perform data setup and integration.

Related Links

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

10/128

Endless Aisle
Development Environment Requirements

Apple Developer
License

Approving a
Development Certificate Request

Importing the
Apple Distribution Certificate

Installing Xcode

Installing Titanium CLI.

Installing the
Titanium SDK from a Terminal.

Ensure You Have Supported Versions of Endless Aisle Development
Software.

1.10.1. Commerce Cloud Endless Aisle Development Environment Requirements

The following are the requirements. For the latest information, also
see the file README.md in the source code.

Salesforce B2C Commerce

OCAPI

Site Genesis

Server API

A Mac with at least 16 GB of RAM, running Mac OS version 10.12.x or
later

Titanium CLI - You install Titanium CLI and use the mobile application framework that
allows for single code base development for a number of platforms, including Android
and
iOS which includes Titanium SDK and Titanium CLI

Titanium SDK

Node

Alloy.js

Backbone.js - a client-side JavaScript library for working with RESTful APIs in
HTML 5 applications

Underscore - a client-side JavaScript library for working with functions,
objects, arrays, and collections

XCode

iOS SDK

iOS Simulator

JavaScript

Apple Developer
License

Apple Distribution
Certificate

Related Links

Apple Developer
License

Approving a
Development Certificate Request

Importing the Apple
Distribution Certificate

Installing Xcode

Install Titanium CLI

Installing the Titanium SDK
from a Terminal.

Ensure
You Have Supported Versions of Endless Aisle Development
Software.

1.10.2. Apple Developer License

For the most recent information from Apple, see the App
Distribution Guide.

When you sign up for an Apple Developer License, sign up for the
Enterprise program. This lets you distribute in-house apps. See

To get an Apple Developer License:

1. Go to the Apple iOS Developer Enterprise Page.

2. Click Get started with enrollment.

3. When the page that lists what you need appears, click
Start Your Enrollment.

https://developer.apple.com
https://developer.apple.com/programs/enterprise/

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

11/128

4. Click Create Apple ID or log in using your
Apple credentials.

5. When the Apple Developer Agreement appears, check the
confirmation box and click Submit.

6. Select the entity type (usually Company / Organization) and click
Continue.

7. Specify either:Apply for an iOS
Developer Enterprise Account.

I am the owner/founder and have authority to bind my
organization to legal agreements

My organization has given me the authority to bind it to legal
agreements

8. Enter the organization information and click
Continue.

You receive an email, which is
sent to the email address you used to register, that contains a
verification code.

9. Enter the verification code.

A thank you message appears. You
will receive another email in 24 to 48 hours with the documents needed
to verify your company with Apple.

10. Submit the documentation to Apple.

You will then receive an email
informing you that your documents were accepted.

11. Choose your developer license.

12. Provide your billing information.

The team admin approves team member requests for development
certificates. The team admin gets an email when a team member requests a
development certificate. The email
contains a link to the Member Center to
approve the request.

To approve a development certificate request:

1. In Certificates, Identifiers & Profiles, select
Certificates.

2. Under Certificates, select Pending.

3. Select the certificate.

4. Click Approve.

5. In the dialog, click Approve again.

To install the developer certificate:

1. On the iOS Provisioning Portal, select Certificates >
Distribution.

2. Control-click the certificate link and select Saved
Linked File to Downloads.

3. When the certificate is downloaded, on your local machine
double-click the certificate to launch Keychain Access and install.

The next step is approving a Developer
Certificate request.

Related Links

Commerce Cloud Endless Aisle Development
Environment Requirements

Approving a
Development Certificate Request

Importing the Apple
Distribution Certificate

Installing Xcode

Installing Titanium CLI.

Installing the Titanium SDK
from a Terminal.

Ensure
You Have Supported Versions of Endless Aisle Development
Software.

1.10.3. Approving a Development Certificate Request

The team admin approves team member requests for development
certificates. The team admin gets an email when a team member requests a
development certificate. The email
contains a link to the Member Center to
approve the request.

1. To approve a development certificate request:

a. In Certificates, Identifiers & Profiles, select
Certificates.

b. Under Certificates, select
Pending.

c. Select the certificate.

d. Click Approve.

e. In the dialog, click Approve
again.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

12/128

2. To install the developer certificate:

a. On the iOS Provisioning Portal, select
Certificates > Distribution.

b. Control-click the certificate link and select
Saved Linked File to Downloads.

c. When the certificate is downloaded, on your local machine,
double-click the certificate to launch Keychain Access and
install.

The next step is importing the Apple
Distribution Certificate.

1.10.4. Importing the Apple Distribution Certificate

1. On the Mac, in Applications, select Utilities >
Keychain Access.

2. From the Keychain Access menu, select Certificate
Assistant > Request a Certificate from a Certificate
Authority.

3. Enter your email, select Saved to Disk,
and click Continue.

4. When your app is ready for distribution, go to the iOS
Provisioning Portal.

5. On the Distribution tab, click Request
Certificate, click Choose File,
specify the file that was created previously, and click
Submit.

6. Click Download and save the file.

7. Double-click the distribution_identity.cer file, which is in your
Downloads folder.
The next step is installing
Xcode.

1.10.5. Installing Xcode

The latest version of Xcode might not be the one required to run Commerce Cloud
Endless Aisle. You might need to install a previous version. The required version is listed
in the file
README.md in the Endless Aisle source code. If a previous version of Xcode is
required, go to https://developer.apple.com/downloads/index.action?g=xcode. Otherwise, to
download the current version of Xcode, go to page https://developer.apple.com/download/.

1. Go to the App Store. (In Applications, double-click App Store.)
or when installing a previous version, got to
https://developer.apple.com/downloads/index.action?g=xcode.

2. Search for Xcode.

3. Click Free, then click Install
app under Xcode.

4. Enter your Apple ID and password, click Sign
In, and agree to the terms and conditions.

5. Wait while Xcode downloads to Launchpad, which takes a few
minutes.

6. Open LaunchPad and double-click
Xcode.

7. Select Install and enter your system
password.

8. When Xcode completes installing, start Xcode.

9. Select the Xcode button > Preferences >
Components, select the components to install, and
click Check and Install Now.

10. To ensure that you are running the version of Xcode specified in
the README.md file of Endless Aisle, uncheck Check for
and install updates automatically.
To revert to a previous version of Xcode:

a. Delete the existing version of XCode by using Finder to go to
Applications; select XCode and select Move to Trash.

b. Do one of the following:

Go to
https://developer.apple.com/downloads/index.action?g=xcode,
log in with your Apple developer credentials, and download
the version of Xcode you
want.

Go to the Apple app store and download the version of
XCode you want.

Note: As an alternative to deleting and installing Xcode versions, it's
possible to have multiple versions of Xcode installed. When you
have multiple versions of Xcode, you
can use
xcode-select to switch the version you are
using.

The next step is Installing
Titanium CLI.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

13/128

1.10.6. Install Titanium CLI

Appcelerator Studio is no longer available. As an alternative, you can install the
visual code extension for Titanium. Before you begin, make sure you have the appropriate
versions of
Endless Aisle development software.
After you complete the following steps, you also install Titanium SDK from a
terminal.

1. Follow the instructions to install the Titanium LCI.
See Get Started with App Builder

2. Follow the installation instructions.
See Visual Studio Code Extension for Titanium documentation.

3. Specify your workspace as the folder where you will download the
Endless Aisle app source files.
The next step is Installing Titanium SDK
from a Terminal.

1.10.7. Installing Titanium SDK/CLI specific versions

If the version of the SDK that you need isn't available through a
download, you can still install from a terminal window.

1. Open a terminal window.

2. To see what version of SDK you are using, type the command: appc ti
sdk

3. Type a command similar to the following, specifying the version to install:
appc ti sdk install 7.5.1.GA
If you get an error about not being able to find a version beyond 4.0, try using
the command: appc ti sdk install 7.5.1.GA --force

4. To change the SDK version that is installed, type the command: appc ti sdk select 7.5.1.GA

5. The see what CLI version you are using, type the command: appc use

6. To specify and install the version of the CLI, type the command: appc use
7.0.9

7. Next step is to ensure you have the supported versions of Commerce Cloud Endless Aisle development software.

1.10.8. Ensure You Have the Supported Versions of Commerce Cloud Endless Aisle
Development
Software

To ensure you have the appropriate versions of all the software
required to run and develop the Endless Aisle app, see the README.md file
in the Endless Aisle source code.

The version of each required element is important. If you don't have
the correct version, the app might not run.

OCAPI - The version of OCAPI is set in the Endless Aisle app. You
shouldn't change this number.

SiteGenesis - The version is set by Salesforce B2C Commerce and
shouldn't be changed.

B2C Commerce server API - The version is set by B2C Commerce and shouldn't be
changed.

iOS SDK - To specify the version, edit the appropriate file
(tiapp.xml.sample.verifone, tiapp.xml.sample.adyen, or
tiapp.xml.sample.ptw) and then rename it tiapp.xml. The
drop-down lists
available versions, which are determined by the version of XCode that
you have installed. To change the available versions, follow the
instructions for Xcode.

iOS Simulator - Included with Xcode.

Backbone.js - Included with the Endless Aisle app source code.

Alloy.js - Installed with Titanium CLI.

Node - Installed with Titanium CLI.

Update Xcode

The version of Xcode appears on the
splash screen. You can also select Xcode > About
Xcode from the menu.

To revert to a previous version of
Xcode:

1. Delete the existing version of Xcode by removing Xcode from the
Applications folder.

2. Either go to the App store and download the version of Xcode you
want or go to
https://developer.apple.com/downloads/index.action?g=xcode, log in
with your Apple
developer credentials and download the version of
Xcode you want.

The next step is to perform data setup and
integration.

i

https://platform.axway.com/#/product/cli
https://docs.axway.com/bundle/Titanium_SDK_allOS_en/page/visual_studio_code_extension_for_titanium.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

14/128

Related Links

Endless Aisle Development Environment Requirements

Apple Developer License

Approving a Development Certi�cate Request

Importing the Apple Distribution Certi�cate

Installing Xcode

Installing Titanium CLI.

Installing the Titanium SDK from a Terminal.

1.11. Perform Data Setup and Integration

To enable Commerce Cloud Endless Aisle, you perform data setup and integrations
required to run the Endless Aisle app on your own sandbox.

You can either:

use SiteGenesis with the Endless Aisle storefront cartridge
(ea_sitegeneisis_storefront)

use your existing site with modifications to support Endless
Aisle

Prior to performing data setup and integration, you should set up your Endless Aisle
development environment.

Steps to perform data setup and integration include:

1. Downloading Endless Aisle
Source Code

2. Importing the Endless Aisle
Project

3. Updating the Cartridge
Path

4. Adding Endless
Aisle Module to Administration Role

5. Modifying Your
Storefront

6. Generate Site Import Data

7. Import Site

8. Enabling Endless
Aisle CalculateCart Hooks

9. Enabling Multi-Currency
in Endless Aisle

10. Updating GetImage On
Server Side

Related Links

Downloading Endless Aisle Source Code Importing

the Endless Aisle Project

Updating the Cartridge Path

Adding Endless Aisle Module to Administration Role

Modifying Your Storefront

Generate Site Import Data

Import Site

Enabling Endless Aisle CalculateCart Hooks

Enabling Multi-Currency in Endless Aisle

Update GetImage On Server Side

1.11.1. Downloading Commerce Cloud Endless Aisle Source Code

You download the Endless Aisle source code from GitHub.

Navigate to Salesforce Commerce Cloud SSO Signup, and log in with
Account Manager credentials.

If you have access, you can get source code from the following
repositories:

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/b2c_downloading_ea_source_code.html
https://github.com/orgs/SalesforceCommerceCloud/sso/sign_up

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

15/128

app source (ea-app)

server source (ea-api)

test scripts (ea-tests) module

source (ea-modules)

Follow the instructions on each GitHub page to get the source.

 The next step is importing the Endless Aisle project.

Related Links

Endless Aisle App Source Code

Endless Aisle API Source Code

Endless Aisle Module Source Code

Importing the Endless Aisle Project

Updating the Cartridge Path

Adding Endless Aisle Module to Administration Role

Modifying Your Storefront

Generate Site Import Data

Import Site

Enabling Endless Aisle CalculateCart Hooks

Enabling Multi-Currency in Endless Aisle

Updating GetImage On Server Side

1.11.1.1. Commerce Cloud Endless Aisle App Source Code

The source code for the Endless Aisle reference app is organized into
models, views, and controllers, along with some additional components.

The directory structure looks like this:

assets Fonts, images, and client-specific components

controllers Controllers

Within the controllers, the code is further
organized as follows:

Variables

App listeners

UI event listeners

Model listeners

Public API

Functions for view/controller lifecycle

init

render

deinit

Functions

UI event handler functions

Model event handlers

Constructor

lib Custom modules, such as the printer and scanner device
drivers

models Models

styles The .tss files that control styles

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

16/128

views Views

Related Links

Downloading Endless Aisle Source
Code

Endless Aisle API
Source Code

Endless Aisle API
Source Code

Importing
the Endless Aisle Project

Updating the Cartridge
Path

Adding Endless Aisle Module
to Administration Role

Modifying Your
Storefront

Generate Site Import Data

Import
Site

Enabling Endless Aisle
CalculateCart Hooks

Enabling Multi-Currency in Endless
Aisle

Updating
GetImage On Server Side

1.11.1.2. Commerce Cloud Endless Aisle API Source Code

Because not all functionality in the Endless Aisle app is provided by
OCAPI, additional functionality is provided with OCAPI hooks and
storefront APIs. For details on storefront APIs,
see Storefront API Reference.

The following are required cartridges:

bm_instore - Required cartridge for managing store associates in
Business Manager

int_ocapi_ext_controllers - Controller code for Endless Aisle OCAPI
extensions (use this or int_ocapi_ext_pipelines, but not both)

int_ocapi_ext_core - Required Endless Aisle common code between
controllers and pipelines. Also contains import configurations for
setting up Business Manager

int_ocapi_ext_pipelines - Pipeline code for Endless Aisle OCAPI
extensions (use this or int_ocapi_ext_controllers, but not both)

The following are additional cartridges:

ea_sitegenesis_storefront - Example storefront cartridge with
Endless Aisle implementation

ea_sitegenesis_storefront_richUI - Example storefront rich UI
cartridge with Endless Aisle implementation

int_verifone_dss_controllers - If using Verifone payment, this is
the controller code for Verifone decryption (use this or
int_verifone_dss_pipelines, but not both)

int_verifone_dss_core - If using Verifone payment, Verifone
decryption common code between controllers and pipelines

int_verifione_dss_pipelines - If using Verifone payment, this is the
pipeline code for Verifone decryption (use this or
int_verifone_dss_controllers, but not both)

Note: You only need to use ea_sitegenesis* if you don't already have a
storefront cartridge. You also use that cartridge as a reference
to pull into your own storefront cartridge.

Note: You only need to use the int_verifone* cartridges if using Verifone
Device. See Enabling Payment in
Endless Aisle Through Verifone Device.

Related Links

Downloading Endless Aisle Source
Code

Endless Aisle App
Source Code

Importing
the Endless Aisle Project

Updating the Cartridge
Path

Adding Endless Aisle Module
to Administration Role

Modifying Your
Storefront

Generate Site Import Data

Import
Site

Enabling Endless Aisle
CalculateCart Hooks

Enabling Multi-Currency in Endless
Aisle

Updating
GetImage On Server Side

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

17/128

1.11.1.3. Commerce Cloud Endless Aisle Module Source Code

Modules are a light JS wrapper that let the app access native functionality that isn't built into the platform itself. They include:

Verifone module

Adyen module

Epson printer module

Ti.Paint - off the shelf module from Titanium marketplace to capture
signature. Source https://github.com/appcelerator-archive/ti.paint

Google Analytics module - source https://github.com/benbahrenburg/Ti.GA

Log Capture module - for capturing exceptions in the application. Source
http://gitt.io/component/yy.logcatcher

WebDialog module - for pay through web support. Source https://github.com/appcelerator-modules/titanium-web-dialog

Swiss Army Utils module - for redirecting console logs to
a file

Barcode Scanner module - for capturing barcodes with the
iPad camera

For more information, see the build script instructions in the ea-modules readme file.

Related Links

Downloading Endless Aisle Source
Code

Endless Aisle App
Source Code

Importing
the Endless Aisle Project

Updating the Cartridge
Path

Adding Endless Aisle Module
to Administration Role

Modifying Your
Storefront

Generate Site Import Data

Import
Site

Enabling Endless Aisle
CalculateCart Hooks

Enabling Multi-Currency in Endless
Aisle

Updating
GetImage On Server Side

1.11.2. Importing the Commerce Cloud Endless Aisle Project

You import the server API code into Eclipse.

1. Install or Update UX Studio.

2. In Eclipse, select File > Import > General >
Existing Projects into Workspace and click
Next.

3. Next to Select root directory, click
Browse and point to the folder where you have
the Endless Aisle API source code.

4. If you don't already have a server connection in Eclipse, follow the instructions in
Connecting to a
Server.

5. Ensure that the required
Endless Aisle API cartridges are in the project references for
the server.

a. In Eclipse in the Navigator or Project Explorer tab,
right-click the Commerce Cloud server for your server instance
and select Properties.

b. Select the cartridges you are using for your environment
(the ones that are in your cartridge path, including
bm_instore).

c. If you are using controllers, and have not already done so,
add the app_storefront_controller cartridge (available in
https://github.com/SalesforceCommerceCloud/sitegenesis) as a project
references, because it needs to be uploaded on the server.
Endless Aisle uses app_storefront_controllers for guard.js.
If you are using controllers on your storefront, you probably
already have uploaded it to your server you can
skip this
step.

6. Upload the cartridges to the server:

a. In Eclipse in the Navigator or Project Explorer tab,
right-click the Commerce Cloud server for your server instance
and select Salesforce B2C Commerce Server.

b. Select Upload Cartridges and enter
your credentials.

7. Next step is Updating
the Cartridge Path.

Related Links

Import Cartridges in to Your Storefront

Upload Cartridges

https://github.com/appcelerator-archive/ti.paint
https://github.com/benbahrenburg/Ti.GA
http://gitt.io/component/yy.logcatcher
https://github.com/appcelerator-modules/titanium-web-dialog
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/LegacyDevDoc/InstallUXStudio.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/LegacyDevDoc/ConnectingtoaServer.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/LegacyDevDoc/ImportCartridgesIntoYourStorefront.html
https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/LegacyDevDoc/UploadCartridges.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

18/128

1.11.3. Updating the Cartridge Path

If you are using controllers, you must upload the
app_storefront_controller cartridge, but you don't need to add it to the
cartridge path.

1. In Business Manager, select Administration > Sites >
Manage Sites.

2. Select SiteGenesis or your site and click the
Settings tab.

3. Add the Commerce Cloud Endless Aisle cartridges to the list of cartridges:

a. If you are using Endless Aisle pipelines add the following to
the beginning of your path:
int_ocapi_ext_core:int_ocapi_ext_pipelines:

b. If you are using Endless Aisle controllers add the following
to the beginning of your path:
int_ocapi_ext_core:int_ocapi_ext_controllers:

c. If you are using the SiteGenesis with Salesforce B2C Commerce strorefront
cartridge add the following to your path:
ea_sitegenesis_storefront_richUI:ea_sitegenesis_storefront:

4. Add the Verifone cartridges to the list of cartridges if using
Verifone devices:

a. If you are using Endless Aisle pipelines and Verifone devices
add the following to the beginning of your path:
int_verifone_dss_core:int_verifone_dss_pipelines:

b. If you are using Endless Aisle controllers and Verifone
devices add the following to the beginning of your path:
int_verifone_dss_core:int_verifone_dss_controllers:

5. Click Apply.

6. Add bm_instore to the Business Manager cartridge path.

a. Click the Business Manager link below
the site table.

b. Add :bm_instore to the end of the cartridge path.

c. If you plan to use Endless Aisle Sales Reports in Business
Manager, add int_ocapi_ext_pipelines:int_ocapi_ext_core: to the
cartridge path.

d. Click Apply.

7. The next step is adding Endless Aisle
module to Administration role.

1.11.4. Adding a Commerce Cloud Endless Aisle Module to Administration Role

There is a Business Manager extension where store managers can
manage associate codes for the Endless Aisle app. To be able to see and use
the extension, you add "manage store
associates" to your role's
permissions.

Each manager who needs to manage associate codes requires a Business
Manager profile. (This is different from the Application's Business
Manager profile.)

Managers only have access to the stores for which they can manage
access.

Managers have no access in the Business Manager other than the
module to manage their employees and change their own password.

Before completing the following steps, you should have:

Downloaded Endless Aisle
Source Code

Imported the Endless Aisle
Project

Updated the Cartridge
Path

1. Add the “Manage Store Associates” to the Administration
role.

a. In Business Manager, select Administration >
Organization > Roles & Permissions > Administrator >
Business Manager Modules.

b. Select the site as the context, instead of organization, and
click Apply.

c. Scroll to the bottom of the page, select Manage Store
Associates, and select Update. Ensure you
are adding this module to the correct site roles and you are
logging into
Business Manager as an Administrator.

2. The next step is modifying your
storefront.

1.11.5. Modifying Your Storefront

The Commerce Cloud Endless Aisle app server code includes the following
cartridges:

core:

ea_sitegenesis_storefront or app_storefront_core

int_ocapi_ext_core

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

19/128

int_verifone_dss_core

bm_instore

pipelines:

int_ocapi_ext_pipelines

int_verifone_dss_pipelines

controllers

int_ocapi_ext_controllers

int_verifone_dss_controllers

The following combinations are possible:

ea_sitegenesis_storefront with Endless Aisle pipelines

ea_sitegenesis_storefront with Endless Aisle controllers

app_storefront_pipelines with Endless Aisle pipelines

app_storefront_pipelines with Endless Aisle controllers

app_storefront_controllers with Endless Aisle controllers

Note: Salesforce recommends using controllers unless you are on a
compatibility mode earlier than 15.5.

Before performing the following steps, you should have:

Downloaded Endless Aisle
Source Code

Imported the Endless Aisle
Project

Updated the Cartridge
Path

Added Endless
Aisle Module to Administration Role

1. Add cartridge code to your Commerce Cloud server by importing it
into Eclipse and adding it as a project reference on your server:

If you are using pipelines, add int_ocapi_ext_core and
int_ocapi_ext_pipelines.

If you are using controllers, add int_ocapi_ext_core and
int_ocapi_ext_controllers.

2. In int_ocapi_ext_core, update script import references by searching
for "ea_sitegenesis_storefront" in
cartridge/scripts/actions/GetCoreCartridgePath.ds and replacing it with
the name of the core cartridge.

3. In your storefront cartridge, add the function
calculateNonGiftCertificateAmount to
cartridge/scripts/checkout/Utils.ds.

The function is available in the
package of server files available from Salesforce. Copy and then paste
the function from the file
ea_sitegenesis_storefront/cartridge/scripts/checkout/utils.ds.

4. If you are using ValidateCartForCheckout.js, change any existing
references in the code to ValidateCartForCheckout.js, instead of
referring to ValidateCartForCheckout.ds.

5. Ensure that the following functions are included in CalculateCart.ds
or calculate.js by copying the functions from
ea_sitegenesis_storefront/cartridge/scripts/cart/CalculateCart.ds or
ea_sitegenesis_storefront/cartridge/scripts/cart/calculate.js, whichever
matches what you are using in
your storefront:

CalculateCart

calculateProductPrices

calculateGiftCertificates

calculateTax

updateTotals(basket: Basket)

overrideProductPrice

overrideShippingPrice(basket : Basket)

addCustomAttributesToBasket(basket : Basket)

addProductItemCustomAttributes(basket : Basket)

calculateAvailabilityMessage(pli: ProductLineItem)

addShippingMethodCustomAttributes(basket: Basket)

addBasketCustomAttributes(basket : Basket)

calculateProductTotals(basket : Basket, obj : Object)

calculateShippingPrices(basket : Basket, obj : Object)

calculateApproachingPromotions(basket : Basket, obj :
Object)

calculateCoupons(basket : Basket, obj: Object)

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

20/128

Note: If your storefront is based on a newer version of
SiteGenesis, CalculateCart.ds has been replaced by calculate.js. In that
case, you need to change calculate.js
(using new hooks).

6. In CalculateCart.ds or calculate.js, call the function
overrideProductPrice from within the
calculateProductPrices function by adding the line:

productPrices = overrideProductPrice(basket, productPrices);

after

for each(var product : Product in productQuantities.keySet())
{

var quantity : Quantity = productQuantities.get(product);
productPrices.put(product, product.priceModel.getPrice(quantity));

}

7. Call the function overrideShippingPrice from within
the CalculateCart function in CalculateCart.js or the
calculate function in calculate.js after
ShippingMgr.applyShippingCost(basket) and before
PromotionMgr.applyDiscounts(basket).

8. If you want to enable multi-currency, in calculateCart.ds, replace
dw.system.Site.current.currencyCode to be
session.getCurrency().getCurrencyCode()
throughout the
file.

9. To use multi-currency with Site Genesis Global, in calculate.js,
replace dw.system.Site.current.currencyCode to be
session.getCurrency().getCurrencyCode()
throughout the
file.

10. Copy the function
calculatePaymentInstrumentBalanceAmount from
ea_sitegenesis_storefront/cartridge/scripts/checkout/Utils.ds to
app_storefront_core/cartridge/scripts/checkout/Utils.ds or
mystorefront_storefront_core/cartridge/scripts/checkout/Utils.ds.

11. Include:

module.exports={
execute:execute
}

in the files:

GetApplicableShippingMethods.ds

PrecalculateShipping.ds

UpdateShipmentShippingMethod.ds

12. If you are using Endless Aisle pipelines with
app_storefront_pipelines or using Endless Aisle controllers with
app_storefront_pipelines:

a. In countries.isml, change states.stateUS.options to
states.state.options. Add .toUpperCase() in the if condition when
checking for the country value.

b. Add a line in easearchcustomerjson.isml:

<isset name="countryObj" value="${addressObj.countryCode.displayValue.toUpperCase()}" scope="page"/>

after

<isif condition="${!empty(addressObj)}">

and
replace addressObj.countryCode with
countryObj.

13. If you are using Endless Aisle controllers:

a. Upload app_storefront_controllers and be on a compatibility mode
of 15.5 or later.

b. Ensure that you have changed the cartridge path from
int_ocapi_ext_pipelines to int_ocapi_ext_controllers.

14. If you are using Endless Aisle controllers with
app_storefront_controllers:

a. Include:

module.exports={
execute:execute
}

in the files:

GetCustomerCreditCard.ds

SetOrderStatus.ds

b. In EAUtils.js set the variable useControllers, which is false by
default, to true if you want to use storefront controllers.

c. In
app_storefront_controllers/cartridge/scripts/payment/processor/BASIC_CREDIT.js,
replace the line:

var paymentProcessor = PaymentMgr.getPaymentMethod(paymentInstrument.getPaymentMethod()).getPaymentProcessor();

with

var paymentProcessor = PaymentMgr getPaymentMethod(paymentInstrument getPaymentMethod() split(" ")[0]) getPaymentProcessor();

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

21/128

var paymentProcessor = PaymentMgr.getPaymentMethod(paymentInstrument.getPaymentMethod().split()[0]).getPaymentProcessor();

The following files are changed:

In app_storefront_core/cartridge/scripts/

cart/calculate.js or CalculateCart.ds Ensure functions match what is required for Endless
Aisle

Add functions overrideProductPrice(basket, productPrices)
and overrideShippingPrice

checkout/GetApplicableShippingMethods.ds

checkout/PrecalculateShipping.ds

checkout/
UpdateShipmentShippingMethod.ds

Include:

module.exports={
execute:execute
}

checkout/GetCustomerCreditCard.ds

checkout/SetOrderStatus.ds

Include:

module.exports={
execute:execute
}

Note: Only change these files if you are using If Endless Aisle
controllers with app_storefront_pipelines.

checkout/Utils.ds Copy the function
calculatePaymentInstrumentBalanceAmount from
ea_sitegenesis_storefront/cartridge/scripts/checkout/Utils.ds Add
the function calculateNonGiftCertificateAmoun
ea_sitegenesis_storefront/cartridge/scripts/checkout/utils.ds
in the package of server files.

In int_ocapi_ext_core/cartridge/

scripts/actions/GetCoreCartridgePath.ds Update script import references by searching for
"ea_sitegenesis_storefront" replacing it with the name of the core
cartrid

templates/default/responses/countries.isml Change states.stateUS.options to states.state.options. Add
.toUpperCase() in the if condition when checking
for the co

Note: Only make this change if you are using
Endless Aisle pipelines with app_storefront_pipelines or using
Endless A
controllers with
app_storefront_pipelines.

templates/default/responses/easearchcustomerjson.isml Add a line:

<isset name="countryObj" value="${addressObj.countryCode.displayValue.toUpperCase()}" scope

after

<isif condition="${!empty(addressObj)}">

and
replace addressObj.countryCode with
countryObj

Note: Only make this change if you
are using Endless Aisle pipelines with app_storefront_pipelines or
using Endless A
controllers with
app_storefront_pipelines.

In int_ocapi_ext_pipelines/cartridge/pipelines/

EACheckout.xml

EACreditCard.xml

Change all references for the cartridge path to the one you
are using. (ea_sitegenesis_storefront or
app_storefront_core)

Note: Only change if you are using
app_storefront_pipelines.

The next step is Generate Site Import Data.

Related Links

Downloading Endless Aisle Source
Code

Endless Aisle App
Source Code

Endless Aisle
API Source Code

Importing the Endless Aisle
Project

Updating
the Cartridge Path

Adding Endless Aisle Module
to Administration Role

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

22/128

Generate Site Import Data

Import
Site

Enabling Endless Aisle
CalculateCart Hooks

Enabling Multi-Currency in Endless
Aisle

Updating
GetImage On Server Side

1.11.6. Generate Site Import Data

Generate custom objects, system objects, metadata definitions, and sample data for site
import.

Before completing the following steps, you should have:

Downloaded Commerce Cloud Endless Aisle Source Code

Imported the Endless Aisle Project

Updated the Cartridge Path

Added Endless Aisle Module to
Administration Role

Modified Your Storefront

1. Go to int_ocapi_ext/config directory and run the
./createImprot.sh file.

2. Enter the site name.

3. Enter the custom object type, organization or site.

Organization–To select, enter N. Use if you want to support the same data across all
sites. This is the default selection.

Site–To select enter Y. Use if you want different data on different sites. This
allows for greater site customization. The site option requires the update of
passwords for
each site using Endless Aisle. (DOES THIS APPLY FOR EACH PASSWORD CHANGE
OR JUST AFTER THE INITIAL SITE IMPORT?)

4. This script generates two zip files.

EndlessAisle_(custom_object_type)_(site_name).zip–Custom objects, system objects,
preferences, and metadata definitions.

EndlessAilseSampleData_(custom_object_type)_(site_name).zip–Sample data for the
custom objects.

Note: We recommend that you use the files against your SiteGenesis before you incorporate
them into your storefront, use of the sample data is optional.

5. Repeat steps 1-4 for each site you where you want to run Endless Aisle. Before
generating the zip files for another site, check that the EAStoreRole is enabled for that
site, and
the role has the functional permission to run Endless Aisle for the site.

a. In Business Manger Administration > Roles and Permissions, select
EAStoreRole.

b. Select the Business Manager Modules tab.

c. Confirm that Manage Store Associates, and Custom Object Editor are selected.

d. Step to confirm Endless Aisle functional permission is set for the role. (How is
this confirmed?)

6. The next step is Import Site.

1.11.7. Import Site

The following are required to complete Endless Aisle site import:

EndlessAisle_(custom_object_type)_(site_name).zip–Custom objects, system objects,
preferences, and metadata definitions.

EndlessAilseSampleData_(custom_object_type)_(site_name).zip–Sample data for the custom
objects.

Before completing the following steps, you should have:

Downloaded Endless Aisle Source Code

Imported the Endless Aisle Project

Updated the Cartridge Path

Added Endless Aisle Module to
Administration Role

Modified Your Storefront

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

23/128

Generate Site Import Data

1. In Business Manager, select Administration > Site
Development > Site Import & Export.

2. Under Import, select Local and click Choose
File.

3. Browse to file system-objecttype-extensions.xml, click
Open, and click
Upload.

4. Select system-objecttype-extensions.xml and click Import.

5. Click OK, to validate the file upload.
The Status column updates to “Success” when the import
completes.

6. Repeat steps 1 through 6 for either EA_CustomObjects_Site.xml or
EA_CustomObjects_Organization.xml.

7. In Business Manager, select site
> Merchant Tools > Custom Objects > Import &
Export.

8. Under Import & Export, click
Upload.

9. For each file (EA_Associates_CO.xml, EA_Permission_Groups_CO.xml,
EA_StoreAssociates_CO.xml, and EA_StoreCredentials.xml) click
Browse, select the file, click
Open, and
click
Upload.

10. Click Import & Export in the
breadcrumbs.

11. For each file (EA_Associates_CO.xml, EA_Permission_Groups_CO.xml,
EA_StoreAssociates_CO.xml, and EA_StoreCredentials.xml):

a. Under Custom Objects (XML) click
Import.

b. Click the radio button next to the file name and click
Next.

c. When the validation completes, click
Next.

12. With the MERGE radio button selected, click
Import.
The Status column updates to Success when
the import completes.

13. The next step is enabling Endless Aisle CalculateCart hooks.

1.11.8. Enabling Commerce Cloud Endless Aisle CalculateCart Hooks

If your storefront is based on a version of SiteGenesis previous
to release 15.1, you must make changes to your code to enable calls to
CalculateCart. If you don't do so, your Endless
Aisle app doesn't perform
several cart-related operations.

Before completing the following steps,
you should have:

Downloaded Endless Aisle
Source Code

Imported the Endless Aisle
Project

Updated the Cartridge
Path

Added Endless
Aisle Module to Administration Role

Modified Your
Storefront

Generated Site Import Data

Imported Your Site

1. Copy ea_sitegenesis_storefront/package.json goes into the
app_<site>_core folder.

2. Copy ea_sitegenesis_storefront/cartridge/scripts/hooks.json into
the app_<site>_core/cartridge/scripts folder.

3. Copy ea_sitegenesis_storefront/cartridge/scripts/cart/calculate.js into the
app_<site>_core/cartridge/scripts/cart folder and change the importScript line to
point to the
CalculateCart.ds file.

4. The next step is enabling multi-currency in
Endless Aisle

1.11.9. Enabling Multi-Currency in Commerce Cloud Endless Aisle

1. Verify the value of country con�guration (as speci�ed in Setting Up Catalog Con�guration for Endless Aisle), for example:

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

24/128

Note: This
value is site-specific. Set the value per site. Also, the JSON
can't contain any returns.

2. Ensure you have the currency specified for each site:

a. Select site > Merchant Tools
> Site Preferences > Currencies.

b. Select the currencies you want to enable.

c. Click Add.

3. Ensure that your OCAPI settings include the price book associated
with the currency in which you want to run the app. Include both
list and sale price books. See Configuring
OCAPI
Settings for Endless Aisle.

4. Ensure that the correct shipping methods, which correspond to the
supported currencies, are enabled for the site:

a. In Business Manager, select
site > Merchant Tools >
Ordering > Shipping Methods.

b. Select a currency you have enabled. See Managing
Shipping Methods.

c. Click Apply.

5. To use multi-currency with Site Genesis Global, update
calculate.js, as indicated in Modifying Your
Storefront.

6. The next step is updating getImage on server side.

.

1.11.10. Update GetImage on Server Side

As of release 1.9.0, there are server side changes that have to be made
if you use DIS image service or a non-standard implementation of image
view types

You should review all the calls to getImage in the int_ocapi_ext_core
cartridge to make sure the image view type names are correct for the
server.

If you change the following section in Open Commerce API Settings for
you site, you most likely need to change the server scripts that use
getImage to return the image to
Commerce Cloud Endless Aisle.

{
"resource_id": "/product_search/images",
"methods": ["get"],
"read_attributes": "(**)",
"write_attributes": "(**)",
"config": {

"search_result.hits.image:view_type": "large",
"search_result.variation_attributes.values.image:view_type": "medium",
"search_result.variation_attributes.values.image_swatch:view_type": "swatch"

},
"cache_time": 900

},

For DIS the configuration is usually the same view type for all images;
the image service sizes the image accordingly based on the
configuration.

Next steps: Set Up Business
Manager for Endless Aisle

Related Links

Downloading Endless Aisle Source
Code

Endless Aisle App
Source Code

Endless Aisle
API Source Code

Importing the Endless Aisle
Project

Updating
the Cartridge Path

Adding Endless Aisle Module
to Administration Role

Modifying Your
Storefront

Generate Site Import Data

Import
Site

Enabling Endless Aisle
CalculateCart Hooks

Enabling Multi-Currency in Endless
Aisle

{"US": {"displayName": "United States", "currencySymbol": "$", "list_price_book": "usd-list-prices", "sale_price_book": "usd-sale-pr

https://documentation.b2c.commercecloud.salesforce.com/DOC1/topic/com.demandware.dochelp/content/b2c_commerce/topics/ordering/b2c_managing_shipping_methods.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

25/128

1.12. Set Up Business Manager for Commerce Cloud Endless Aisle

To be able to run the Endless Aisle app, you perform some setup in
Business Manager:

1. Complete all the steps in Perform Data Setup and
Integration.

2. Ensure Product
UPCs Are Searchable in Endless Aisle

3. Configuring OCAPI
Settings for Endless Aisle

4. Updating the Oauth
Custom Object

5. Importing Endless Aisle
Settings

6. Setting Up Payment for
Endless Aisle

7. Specifying
General Endless Aisle Settings in Business Manager

8. Setting Up Analytics for
Endless Aisle

9. Setting Up Images for Endless
Aisle

10. Setting Up Endless
Aisle to Run in Kiosk Mode

11. Setting Up Error
Logging for Endless Aisle

12. Setting Up
Product and Shipping Price Overrides

13. Setting Up Endless Aisle
Checkout

14. Setting Up Endless Aisle
App Timeouts

15. Setting Up
Catalog Configuration for Endless Aisle

16. Setting Up Endless Aisle
Sales Reports

17. Setting Up
Google Address Suggestion for Endless Aisle

18. Adding
an Endless Aisle App Configuration to Business Manager

1.12.1. Commerce Cloud Endless Aisle Feature Switches

The following table contains the feature switches
for enabling and disabling functionality within the Endless Aisle app.
When you change these preferences, the feature will be
updated in the app after login. There are additional preferences that are
not shown in this table that are for application configuration instead of
features. Some of these feature
switches have related configurations, for
example, overrides have additional preferences for configuring the
override reasons.

Feature Default Endless Aisle

Preference Page

Notes

Address Suggestions Off Address
Suggestions

Google API key required to enable address
suggestions

Address Verification Off General Requires server side implementation, but the client side
can be enabled to then verify customer, shipping
and billing
addresses

Admin Dashboard Permissions based access

Adyen Signature
Confirmation

On Checkout When using Adyen devices, associate is required to confirm
signature

Alternate Shipping On Checkout Ship to store as a shipping address option

Change Storefront Link Off General Ability to switch to different storefront site and language
from the login dialog

Collect Billing Address Off Checkout Will always be on if using Pay Through Web

Forgot Password Link On General Lets a manager change the associate password from the
login dialog

Gift Cards Accepted On Checkout Accept gift cards for payment - disabled for Adyen
devices

Gift Messaging On Checkout Gift messaging for shipping

Google Analytics Off Analytics Configuration for enabling Google analytics
tracking

Kiosk Off Kiosk When kiosk username/password is set up, this can be enabled
and disabled in the application

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

26/128

Kiosk Cart Functionality On Kiosk Requires kiosk to be on, is used to allow/disallow checkout
in kiosk mode

Multi Tender Payments
Accepted

On Checkout Enables accepting multiple payment types on the same order
- disabled for Adyen devices

Order History Email Button On General Show/hide customer email on order history

Order History Print Button On General Allow/disallow printing order history

Payment Device Connection
Dialog

On Device Configurable dialog to appear at login or checkout to
indicate an issue with payment device

Payment Device Connection
Icon

On Device Icon in primary navigation bar to indicate whether payment
device is connected

Pickup In Another Store On Alternate
Shipping

Allow/disallow customer pickup in another store location

Printer Availability On Checkout Allow/disallow printing a receipt

Product Image Zoom On General Allow/disallow image zoom on large product images

Product Price Overrides On Overrides Permission based for amounts to allow

Product Recommendations On General Recommendations tab on PDP

Sales Dashboard Sales Reports Permissions based access, although there are configurations
related to Sales Reports

Shipping Price Overrides On Overrides Permission based for amounts to allow

Store Inventory On General Display inventory tab on PDP

Wish List On General Show/hide customer wish lists features

Related Links

Ensure Product UPCs Are Searchable in Endless Aisle

Con�guring OCAPI Settings for Endless Aisle

Setting Up OCAPI Oauth for Endless Aisle

Importing Endless Aisle Settings

Setting Up Payment for Endless Aisle

Specifying General Endless Aisle App Settings in Business Manager

Setting Up Analytics for Endless Aisle

Setting Up Images for Endless Aisle

Setting Up Devices for Endless Aisle

Setting Up Endless Aisle to Run in Kiosk Mode

Setting Up Error Logging for Endless Aisle

Setting Up Product and Shipping Price Overrides in Endless Aisle

Setting Up Catalog Con�guration for Endless Aisle

Setting Up Endless Aisle Checkout

Setting Up Endless Aisle App Timeouts

Setting Up Endless Aisle Sales Reports

Setting Up Address Suggestion for Endless Aisle

Adding an Endless Aisle App Con�guration to Business Manager

.

1.12.2. Ensure Product UPCs Are Searchable in Commerce Cloud Endless Aisle

When you scan a UPC barcode in Endless Aisle, the app is simply
performing a search for this UPC number. Proper setup of product IDs in
Salesforce B2C Commerce is required for
this feature to work
properly.

If your product UPCs are already loaded into Commerce Cloud as product
IDs, there is nothing else you have to do. Your UPCs are searchable via
the product-search pipeline, and the
laser scanner will work.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

27/128

To test it, type in a UPC in the search box on your website. If it
returns the product detail page, then it's all set.

If your web products have different product identifiers than store
products, most likely your products’ UPCs are not loaded into Commerce
Cloud into a field that is searchable. A
small amount of integration work
is required.

1. Identify a field on the product record where you would like to store
the UPC. There is a UPC field in Commerce Cloud that can be available
for your use, or you can add any
custom attribute to store this
data.

2. Mark the field as searchable in the system or custom object
definition.

3. Load your UPC into the Commerce Cloud catalog.

4. Run a search index.

5. Test by entering a UPC into the search box on your website. It
should return the PDP of the product searched.

Related Links

Endless Aisle Feature Switches

Con�guring OCAPI Settings for Endless Aisle

Setting Up OCAPI Oauth for Endless Aisle

Importing Endless Aisle Settings

Setting Up Payment for Endless Aisle

Specifying General Endless Aisle App Settings in Business Manager

Setting Up Analytics for Endless Aisle

Setting Up Images for Endless Aisle

Setting Up Devices for Endless Aisle

Setting Up Endless Aisle to Run in Kiosk Mode

Setting Up Error Logging for Endless Aisle

Setting Up Product and Shipping Price Overrides in Endless Aisle

Setting Up Catalog Con�guration for Endless Aisle

Setting Up Endless Aisle Checkout

Setting Up Endless Aisle App Timeouts

Setting Up Endless Aisle Sales Reports

Setting Up Address Suggestion for Endless Aisle

Adding an Endless Aisle App Con�guration to Business Manager

.

1.12.3. Configuring OCAPI Settings for Commerce Cloud Endless Aisle

1. In Business Manager, select Administration->Site
Development > Open Commerce API Settings.

2. For type, select Shop and for context,
select Site Genesis or <your site>. You follow these
steps for each site with which you plan to use Endless Aisle.

a. Copy the contents of your existing OCAPI settings to another
text file, so that you can merge your settings into the new OCAPI
settings.

b. Copy and paste the contents of the file
int_ocapi_ext_core/config/EA_OCAPI_Shop_Settings.json into the
text area.

c. Change the setting for
"resource_id":"/products/{id}/availability; set the cache to
0.
If you specify a value other than 0, the minimum
allowed value for cache_time is 60. If you want to specify that
inventory data be updated every minute (and not more
frequently),
you can change the content to:
"cache_time":60.

Endless Aisle optimizes
updating inventory data. For example, if there are only two of a
particular product available to sell, and a customer orders both
of them, you
don't want other customers or associates to think
that there are still two in stock. To ensure that your Endless
Aisle app takes advantage of this capability, you can set the
cache to 0.

d. Change the client_id and other values as needed. Values you
might need to change include the client_id, the allowed_origins
section, the
product.prices.price_book_ids, and
product_search/images to contain correct view_types.

e. If you are enabling multi-currency, in the following section,
add the price book associated w/the currency in which you want to
run the app; include both list and sale
price books.

"config":{
"product.prices.price_book_ids":"usd-sale-prices,usd-list-prices,eur-list-prices,eur-sale-prices"

},

Note: You can have multiple price books separated by
commas.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

28/128

3. Click Save.

4. For type, select Data and for context,
select Global (organization-wide) as the
context.

a. Copy the contents of your existing OCAPI settings to another
text file, so that you can merge your settings into the new OCAPI
settings.

b. Copy and paste the contents of the file
int_ocapi_ext_core/config/EA_OCAPI_Data_Settings.json into the
text area.

c. Change the client_id.

5. Click Save.

6. Continue with Updating the Oauth Custom
Object.

1.12.4. Setting Up OCAPI Oauth for Commerce Cloud Endless Aisle

1. In Business Manager, select site > Merchant Tools
> Custom Objects > Custom Object Editor.

2. Select oauth as the object type and click
New.

3. Enter the client ID for which you want to specify the secret.
This is the client ID you specified in the OCAPI settings. See Configuring OCAPI Settings
for Endless Aisle.

4. Enter the secret.

5. Confirm the secret.

6. Click Apply.

7. Update your OCAPI client ID to the same ID used in the oauth
custom object:

a. In Business Manager, select site > Merchant
Tools > Site Preferences > Custom
Preferences.

b. Click Endless Aisle General.

c. Specify the OCAPI Client ID to be the one used in the oauth
custom object.

d. Click Save.

8. Next step is Importing
Endless Aisle Settings.

1.12.5. Importing Commerce Cloud Endless Aisle Settings

You can import Endless Aisle app settings using EA_preferences.zip
file, but first you must change the directory name to the name of your site.
However, you can only import the
EA_preferences.zip file that is included
with the Endless Aisle app if SiteGenesis is your site name. Otherwise,
follow steps 4-6 to recreate the .zip file.

Any preferences specified in preferences.xml will
overwrite any Endless Aisle app settings currently specified in
Business Manager. If you want to keep existing Endless Aisle
preferences,
export them, merge the preferences.xml files, and then import
them.

Note: If you change any Endless Aisle custom site
preferences from the default value, you must also change it on each instance
so that the replication pushes those values and
not undo any changes on
development or production. Don't make changes on development or production;
instead, make changes on staging and then replicate them.

1. Go to int_ocapi_ext_core/config/EA_Preferences/sites and change
SiteGenesis to be the name of your site.

2. Look at the preferences.xml file and see if any modifications are
needed.

3. Zip the file EA_Preferences file with the following command:
zip -r EA_Preferences.zip EA_Preferences
Don't use the compress functionality in Finder on the Mac to
create the .zip file; if you do so, the import fails. Instead, use
the command line option as documented.

4. In Business Manager, select Administration->Site
Development->Site Import & Export.

5. Click Choose File and select the
EA_Preferences.zip created in step 3.

6. Click Open.

7. Click Upload.

8. In the table, select EA_Preferences.zip.

9. Click Import and click
OK.

10. Next step is Setting Up
Payment for Endless Aisle.

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/https://www.salesforce.com/company/privacy/

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

29/128

1.12.6. Setting Up Payment for Commerce Cloud Endless Aisle

1. Create the payment processor:

a. In Business Manager, select site > Merchant
Tools > Ordering > Payment Processors.

b. Click New.

c. Enter EACreditCard as the ID.

d. (optional) Enter a description, for example, Payment
processor used by Endless Aisle.

e. Click Apply.

2. Import the payment method file:

a. In Business Manager, select site > Merchant
Tools > Ordering > Import & Export.

b. Under Import & Export Files, click
Upload.

c. Click Choose File, select the file
int_ocapi_ext_core/config/EA_payment_methods.xml, click
Open, and click
Upload.

d. Click >Import & Export in the breadcrumbs, then under
Payment Methods, click Imports.

e. Select the radio button next to EA_payment_methods.xml​ and
click Next.

f. After Business Manager performs the validation, click
Next.

g. With the MERGE radio button selected, click
Import.
The Status column updates to Success when the import
completes.

3. Enable the credit card payment method:

a. In Business Manager, select site > >Merchant
Tools > Ordering > Payment Methods.

b. Select Yes in the drop-down in the Enabled column for
EA_Credit_Card.

c. Click Apply.

4. Set up verification of payment device connection:

a. In Business Manager, select site > Merchant
Tools > Site Preferences > Custom
Preferences.

b. Click Endless Aisle Device.

c. Specify the following:

Verify Payment Terminal at Checkout - whether to check for
a connection to the payment terminal during the checkout
process

Verify Payment Terminal at Login - whether to check for a
connection to the payment terminal right after login

Check Device Connected Interval - how often to check for
payment device connection and update the icon in the
navigation bar

Check Device Dialog Interval - how often to check for
payment device connection and display dialog

d. Click Save.

5. Next step is Specifying
General Endless Aisle App Settings in Business Manager.

1.12.7. Specifying General Commerce Cloud Endless Aisle App Settings in Business
Manager

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle General.

3. Specify the following:

OCAPI Client ID - The OCAPI client ID to use for Endless
Aisle

Order History Email Button - Show the email order button
on order details page from order history.

Order History Print Button - Show the print order button
on order details page from order history.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

30/128

Address Verification - whether to verify any addresses
entered in Endless Aisle (For details on making necessary code
modifications, see Enabling Address
Verification in
Endless Aisle)

Forgot Password Link - whether to show the Forgot
Password link on the login dialog allowing the administrators to
change associate passwords in Endless Aisle

Change Country Link - Show the change Country link on the
login dialog allowing the administrators to change the country in
Endless Aisle

Image Zoom - whether to allow image zoom on product
images

Product Recommendations - whether to show product
recommendations in Endless Aisle

Failed Login Attempts - number of allowed failed login
attempts

Store Inventory - whether to show store inventory in
Endless Aisle

Store Inventory Search Radius - default radius for searching
stores for product inventory

Store Inventory Lookup Unit - default unit type for
searching inventory of product in stores

Customer Search Limit - maximum number of customers to
return in a search query

Orders Returned Limit - maximum number of orders returned
during order history lookups

Wish List - enable wish list in Endless Aisle

Show Private Wish List - show private wish lists when
wish list is enabled in Endless Aisle

Show Product List Private Items - show private items in
wish lists and other product lists

Store Password Expiration Notification - Number of days
before store password expires to notify associate to change
password. If 0 then no notification appears.

4. Click Save.

5. Next step is Setting Up
Analytics for Endless Aisle.

1.12.8. Setting Up Analytics for Commerce Cloud Endless Aisle

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Analytics.

3. Specify the following:

Analytics - whether to perform analytics tracking in Endless
Aisle

Analytics Google Tracker ID - tracker ID for Google
analytics tracking in Endless Aisle

Analytics Dispatch Type - how to dispatch analytics events
(should only be set for 'low_net_traffic' type)

Analytics Event Dispatch Delay - amount of time in seconds
that must pass without any requests being sent from the app before
the analytics events are sent

Analytics Dispatch Interval - interval in seconds that the
events are sent to the analytics service (should only be set for
'interval' type)

4. Click Save.

5. Next step is Setting Up
Images for Endless Aisle.

1.12.9. Setting Up Images for Commerce Cloud Endless Aisle

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Image.

3. Specify the following:

Image Service Type - either Salesforce B2C Commerce Images or
Dynamic Imaging Service

DIS Image Service Base URL - comes from the production
instance

Category Tile Image View Type - default is "small"

DIS Category Tile Image Size - default is
{"sw":"240","sh":"240","sm":"fit"}

Product Tile Image View Type - default is "small"

DIS Product Tile Image Size - default is
{"sw":"240","sh":"240","sm":"fit"}

Cart Image View Type - default is "medium"

DIS Cart Image Size - default is
{"sw":"148","sh":"148","sm":"fit"}

Product Hero Image View Type - default is "large"

DIS Product Hero Image Size -
{"sw":"350","sh":"350","sm":"fit"}

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

31/128

Product Alt Image View Type - default is "small"

DIS Product Alt Image Size - default is
{"sw":"67","sh":"67","sm":"fit"}

Product Alt Zoom Image View Type - default is
"hi-res"

DIS Product Alt Zoom Image Size - default is
"sw":"700","sh":"700","sm":"fit"}

Product Large Alt Zoom Image View Type - default is
"large"

DIS Product Large Alt Zoom Image Size - default is
{"sw":"700","sh":"700","sm":"fit"}

Bundled Product Image View Type - default is
"small"

DIS Bundled Product Image Size -
{"sw":"67","sh":"67","sm":"fit"}

Product Set Image View Type - default is "small"

DIS Product Set Image Size - default is
{"sw":"67","sh":"67","sm":"fit"}

Product Swatch Image View Type - default is
"swatch"

Placeholder Image URL - placeholder image for missing
images

4. Click Save.

5. Next step is Setting Up
Devices for Endless Aisle.

1.12.10. Setting Up Devices for Commerce Cloud Endless Aisle

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Device.

3. Specify the following:

Verify Payment Terminal at Checkout - Endless Aisle will
check for a connection to the payment terminal during the checkout
process if enabled. If no connection then
‘No Connection to Payment
Device’ dialog appears.

Verify Payment Terminal at Login - Endless Aisle checks for
a connection to the payment terminal right after login if true and
if no connection, ‘No Connection to
Payment Device’ dialog appears.
If this is set to disabled, but either Check Device Interval
configurations is set, then you see 'No Connection to Payment
Device' at login
if no device connected.

Check Device Connected Interval - Interval to check for
payment device connected and updates the payment connection icon in
the header. Set to Off to disable check
and remove icon from header.
When connection is lost the ‘No Connection to Payment Device’ dialog
appears as well as the icon updates.

Check Device Dialog Interval - Interval to check for payment
device connected and shows dialog when not connected. Set to Off
to disable check. ‘No Connection to
Payment Device’ dialog will
show every interval until connected.

4. Click Save.

5. Next step is Setting Up Endless Aisle to
Run in Kiosk Mode.

1.12.11. Setting Up Commerce Cloud Endless Aisle to Run in Kiosk Mode

For information about running in kiosk mode, see Run the Endless Aisle App in Kiosk
Mode.

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Kiosk.

3. Specify the following:

Kiosk Mode Username - username for the kiosk store associate
used when kiosk mode is enabled in Endless Aisle

Kiosk Mode Password - the password of that kiosk store
associate

Note: Before you set the kiosk mode username and password
at the store level, ensure that that user is in the kiosk mode
permission group and is assigned to
that store. Kiosk username and
password can be overridden at the store level.

Kiosk Cart Functionality - whether to show cart
functionality while in kiosk mode

Kiosk Order Complete Reset Delay - amount of time in
milliseconds to wait before resetting the kiosk after an order is
completed

4. Click Save.

5. Next step is Setting
Up Error Logging for Endless Aisle.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

32/128

1.12.12. Setting Up Error Logging for Commerce Cloud Endless Aisle

You can turn on logging to see information about app errors: on
the client side or on the server side. Throughout the app, there are events
captured through logging. Your
organization’s app developers can disable
logging of particular events by commenting out the logging code for those
events. For more information see Debug the
Endless Aisle App.

1. To set up client side error logging:

a. In Business Manager, select site > Merchant
Tools > Site Preferences > Custom
Preferences.

b. Click Endless Aisle Logging.

c. Specify the following:

Send Email to Endless Aisle Admin - whether to send email
to Endless Aisle Admin when an error occurs in Endless Aisle
app

Endless Aisle Admin Email Addresses - email addresses that
receive admin emails from the Admin Dashboard or error emails
if Send Email to Endless Aisle Admin
is
true

Log Endless Aisle App Errors to Server - whether to log
Endless Aisle app errors to server log

OCAPI Error Reporting - whether to send email for errors
that occur with OCAPI requests from Endless Aisle

Note: The
three types of error reporting can be overridden at the store
level. If one store is encountering issues, you can disable
error reporting globally and
then turn on error reporting for
that one store so that you only receive messages from that one
store.

Storefront Error Reporting - whether to send email for
errors that occur with storefront requests from Endless
Aisle

JS Crash Reporting - whether to send email for JavaScript
errors that occur in Endless Aisle

Exceptions to Ignore - exceptions that might happen from
server requests (OCAPI or storefront) that shouldn't trigger
an error email

d. Click Save.

2. To set up server side logging:

a. In Business Manager, select Administration >
Operations.

b. Select Custom Log Settings.

c. In Log Category, enter instore-audit-trail, select INFO,
and click Add.

d. Click Apply.

3. The next step is Setting Up
Product and Shipping Price Overrides in Endless Aisle.

1.12.13. Setting Up Product and Shipping Price Overrides in Commerce Cloud Endless
Aisle

Promotions are applied before calculating the override. The
override reasons in the Business Manager are keys for translated reasons
that are defined in
int_ocapi_ext_core/cartridge/templates/resources/getsettings.properties and
the other getsettings_<locale>.properties files

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Overrides.

3. Specify the following:

Product Price Override - whether to allow product price
overrides in Endless Aisle

Product Override Reasons - these messages appear as reasons
to select in Endless Aisle for overrides

Shipping Price Override - whether to allow shipping price
overrides in Endless Aisle

Shipping Override Reasons - these messages appear as reasons
to select in Endless Aisle for overrides

4. Click Save.

5. Next step is Setting up Catalog
Configuration for Endless Aisle.

1.12.14. Setting Up Catalog Configuration for Commerce Cloud Endless Aisle

1. In Business Manager, select site > >Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Catalog.

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/b2c_debug_the_ea_app.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

33/128

3. Specify the following:

Color Attribute–Attribute ID on product to use for determining color
variations

Size Attribute–Attribute ID on product to use for determining if variation is size
to display size chart link

Show Category Attribute–Attribute ID of type Boolean on category to determine if
it should be shown in category grid (home screen) and mega menu (if enabled)

Country Configuration–The country, language, currency, price book and sales price
book to use, and the display name, currency symbol for Business Manager Sales
Reports

Product Rating Attribute–Attribute ID of type Integer on product to use for
showing ratings in Endless Aisle

Product Rating Max Value–Maximum value for product rating, which determines number
of stars shown

Size Chart Attribute–Attribute ID on category to use for showing size chart in
Endless Aisle

Size Chart CSS Attribute–Attribute ID on category to use for obtaining CSS file
for styling of size chart in Endless Aisle

Filter Unorderable Variation Values–If enabled, Endless Aisle filters out
unorderable variation values

Filter Unorderable Variants–If enabled, filter out unorderable variants

4. Click Save.

5. Next step is Setting Up
Endless Aisle Checkout.

1.12.15. Setting Up Commerce Cloud Endless Aisle Checkout

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Checkout.

3. Specify the following:

Store Credit Card Payment Method - enter the payment method
to use for Endless Aisle

Store Credit Card Payment Processor - enter the payment
processor to use for Endless Aisle

Credit Card Decryption Service Endpoint - endpoint to call
for decrypting credit cards

Use Controllers for Decrypting Credit Card - whether to use
controllers or pipelines for decrypting credit card

Credit Card Authorization Endpoint - endpoint to call for
credit card authorization

Payment Process Flow - whether to capture all payment
instruments and perform auths in one final call like Site Genesis,or
perform auths as payments are
entered/captured

Signature Folder - folder where to save the customer
signature for the payment authorization

Note: If you want to store
signatures for payment authorization, you must first create the
folder in which to store the signatures on the server (for example,
Impex/src/signatures) using WebDAV. You then specify the folder in
Business Manager.

NFC Signature Threshold Amount - signature prompt occurs
only when NFC total amount is equal to or greater than configured
amount

Swipe Signature Threshold Amount - signature prompt occurs
only when the swipe total amount is equal to or greater than
configured amount

Adyen Signature Confirmation - for Adyen payment devices,
associate is required to confirm signature from customer prior to
approval.

Gift Messaging - whether to enable gift messages

Collect Billing Address - whether to enable collecting a
separate billing address; if pay through web is used, billing
address is always collected

Gift Cards Accepted - whether to enable accepting gift
cards

Multi Tender Payments Accepted - whether to allow multi
tender payments during checkout

Printer Availability - whether printer is available for
receipts in Endless Aisle

Printer QR Code URL - storefront URL to load for QR code
printed on receipt

4. Click Save.

5. Next step is Setting up
Endless Aisle App Timeouts.

1.12.16. Setting Up Commerce Cloud Endless Aisle App Timeouts

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Timeout.

3. Specify the following:

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

34/128

Application Session Timeout - default amount of time before
the associate is logged out of Endless Aisle when there is no
activity in the app., which can be overridden
at the store level.
and can be changed in the application by anyone with access to the
Admin Dashboard; associates can override this on their local
instance

Session Timeout Dialog Display Time - amount of time the
associate has to continue the session before logout occurs

Session Keep Alive - amount of time between pings to the
server in order to keep the session alive

OCAPI Timeout - amount of time before the OCAPI request will
timeout

Storefront Timeout - amount of time before the storefront
request times out

Server Retries - Number of times the Endless Aisle
application retries a GET server request when a network issue or
timeout prevents a response. Only for those error
codes specified in
'Server Retry Error Codes'.

Server Retry Error Codes - List of response error codes that
are used to retry GET server requests.

4. Click Save.

5. Next step is Setting Up
cEndless Aisle Sales Reports.

1.12.17. Setting Up Commerce Cloud Endless Aisle Sales Reports

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Sales Reports.

3. Specify the following:

Start of Week - start of week can take value Monday or
Sunday

Items Sold Chart - Associate Level - show items sold chart
for associate with associate level privileges

Ranks Chart - Associate Level - show ranks chart for
associate with associate level privileges

Items Sold Chart - Store Level - show items sold chart for
associate with store level privileges

Ranks Chart - Store Level - show ranks chart for associate
with store level privileges

Sales Chart URL Page Name - page or pipelines to load for
sales chart in webview

Items Sold Chart URL Page Name - page or pipelines to load
for items sold chart in webview

Associates Ranking Chart URL Page Name - page or pipelines
to load for associates ranking chart in webview

Stores Ranking Chart URL Page Name - page or pipelines to
load for stores ranking chart in webview

Page Reload Tries - number of page reload tries when main
webview

Category IDs to Hide - IDs of the categories you would not
like to appear in the sales reports

Bar Charts Hex Color String - Color of bar charts in hex,
such as #7fbb00

4. Click Save.

5. Next step is Setting Up Google
Address Suggestion for Endless Aisle.

1.12.18. Setting Up Address Suggestion for Commerce Cloud Endless Aisle

1. Generate a Google Places API Web Services key by browsing to
Google Places API Web Service.

2. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

3. Click Endless Aisle Address
Suggestions.

4. Specify the following:

Google Places API Web Service Key - enter the Google Places
API Web Services key

Google Address Suggestion Radius - specify the radius from
the store location to get addresses

Address Suggestions - select Yes to enable the address
suggestions

5. Click Save.

6. Next step is Setting Up Alternate
Shipping for Endless Aisle.

1.12.19. Setting Up Alternate Shipping for Commerce Cloud Endless Aisle

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/https://console.developers.google.com/apis/api/places_backend/overview

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

35/128

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Custom Preferences.

2. Click Endless Aisle Alternate Shipping.

3. Specify the following:

Ship to Current Store - Enable option for order to be
shipped and picked up from the store it was placed

Pick Entire Order From Another Store - Enable the option for
an entire order to be shipped and picked up from a different
store

Ship To Store Free Shipping Methods - When shipping to this
store, indicate which shipping method ids should provide free
shipping

Store Pickup Methods - Indicate which shipping method ids
reflect store pickup

4. Click Save.

5. Next step is Adding an
Endless Aisle App Configuration to Business Manager.

1.12.20. Adding a Commerce Cloud Endless Aisle App Configuration to Business Manager

1. In Business Manager, select Administration > Site
Development > System Object Types.

2. Select SitePreferencs in the list of
System Object Types.

3. Click the Attribute Definitions tab.

4. Click New.
For Endless Aisle, for the Display Name be sure to include the
Endless Aisle configuration name you want in {}, for example:
Analytics Dispatch Interval
{analytics.dispatch_interval}. Use the
same name as the configuration setting used by the app. In Endless
Aisle, you can then access what you put in {} The name can contain a
period. For example, eaAnalyticsDispatchInterval is represented as
{analytics.dispatch_interval}. You should create the name so it
doesn’t conflict with any of the Endless Aisle
configuration names.
For example, {my.new_config} would become Alloy.CFG.my.new_config in
Endless Aisle. For guidance, you can look at the existing Endless
Aisle
SitePreference attribute definitions, which start with
"ea".

5. Enter the information on the page and click
Apply.

6. Add the configuration to a grouping:

a. Click the Attribute Grouping
tab.

b. Select Edit for the grouping to add
the configuration to.

c. Select the ID you added in step 4.

d. Click Apply.

7. When you create the configuration, you should replicate it to
development and production. Assuming you have created the
configuration on a sandbox, you would export it
and import into
staging.
You can now use Alloy.CFG.my.new_config usage in Endless
Aisle app code.

8. The next step is Creating Stores and
Adding Associates in Endless Aisle.

1.13. Create Stores and Add Associates in Commerce Cloud Endless Aisle

You create the store app role, then create store Business Manager users
that belong to that role. Each store has a Business Manager user
associated with it, which has its own Business
Manager credentials.

You can either create one Business Manager user to be used for all
stores or one for each store. The advantage to having one Business Manager
user for all stores is that you can
update all stores every 90 days with
the new updated password instead of having to do every store separately
and possibly at a different password expiration cycle. The disadvantage
to
this approach is that one user manages all associate logins via Manage
Store Associates. If you want to have the store manager manage store
associates, you should have one store
Business Manager user for each
store; that store manager can log in to Business Manager to update store
associates on that store.

You also create permission groups. For example, you might create one
permission group for store managers and another for store associates. You
then create associates, which are
assigned a permission group and added to
stores. Each associate is assigned their own credentials, which they use
to log in to the Endless Aisle app.

The following table offers a quick reference and links to related
topics:

To create: In Business Manager, select

BM Store App
Role Administration > Organization > Roles &
Permissions

Store Merchant Tools > Online Marketing > Stores

BM
User Administration > Organization > Users

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

36/128

BM
Credentials Merchant Tools > Site Preferences > Manage Store
Associates

Associate
Permission Groups Merchant Tools > Custom Objects > Custom Object
Editor

Store
Associates Merchant Tools > Site Preferences > Manage Store
Associates

Store
Associate Credentials Merchant Tools > Site Preferences > Manage Store
Associates

Note: In the process of creating stores and associates with Manage Store
Associates, the following custom objects are added by
Endless Aisle:

Stores:

storeCredentials - link between Store and BM user for store

storeAssociates – link between Store and associates

Associates:

permissionsGroups – definitions of what the associate role can do
in Endless Aisle

associates – Endless Aisle login information and permission group
for associate

Related Links

Creating the Store App Role

Creating a Store for Endless Aisle

Creating a BM User for Each Store for Endless Aisle

Specifying the BM Credentials for an Endless Aisle Store

Permission Groups for Endless Aisle Store Associates

Managing Permissions for Endless Aisle Store Associates

Creating, Assigning, Modifying Endless Aisle Store Associates

Load Associate Credentials via Batch

Integrate in Real Time to Validate Associate Credentials

.

1.13.1. Update Store App Role Premissions

The Store App role (EAStoreRole) is created during Site import and assigned the following permissions:

Login_On_Behalf

Login_Agent

Create_Order_On_Behalf_Of

Search_Orders

Handle_External_Orders

Adjust_Item_Price

Adjust_Shipping_Price

You add additional permissions to the predefined role as needed. You must have
Administrator privileges in Business Manger to perform these steps.

This is one step in
the process of creating stores and adding
associates in Commerce Cloud Endless Aisle.

1. In Business Manager, select Administration > Organization > Roles
& Permissions.

2. Click EAStoreRole.

3. Click the Functional Permissions, select SiteGenesis or your site from the Select
Context drop-down and click Apply.

4. Click the checkbox next to the functional permission you want to add and click
Update.

5. Click the Locale Permissions, select Read for all the locales you plan to support in
Endless Aisle and click Update.

6. Provide the Endless Aisle Store App role with permissions to update custom objects so
that store managers can update store passwords.

a. Click the Business Manager Modules tab, select SiteGenesis or your site from the
Select Context drop-down and click Apply.

b. Click the checkbox next to Custom Object Editor.

c. Check the checkbox next to Manage Store Associates to be
able to update the store password, which is easier than updating custom objects.

d. Click Update.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

37/128

7. Next step is creating a store for Endless
Aisle

1.13.2. Creating a Store for Commerce Cloud Endless Aisle

This is one step in the process of creating stores and adding associates in Endless Aisle.

1. In Business Manager, select site > Merchant Tools
> Online Marketing > Stores.

2. Click New if you have not already created
a store.

3. Enter the store ID, name and the other info.
You shouldn't leave the store address blank. Inventory
information is needed only if you intend to use the store inventory
feature.

4. Click Save.
You use the store ID if you create or edit the custom objects
storeAssociates and storeCredentials.

5. Next step is creating a BM user for
each store for Endless Aisle.

1.13.3. Creating a BM User for Each Store for Commerce Cloud Endless Aisle

To be able to place an order on behalf of the customer, the store user must be logged in
to Business Manager.

Each associate DOES NOT have their own Business Manger access.

Each
store does have a generic access to Business Manager.

The permissions assigned to this
credential are Log On Behalf, Login Agent, Create_Order_On_Behalf_Of, Search_Orders,
Handle_External_Order, Adjust_Item_Price, and
Adjust_Shipping_Price; also Manage Store
Associates and custom object editing can be enabled.

The credentials have to be reset
four times a year (every 90 days).

You create a Business Manager user for each store
where the Endless Aisle app will be deployed. Be sure to provide user name: store{store
number} example store125, password, and
email address.

You can either create one
Business Manager user to be used for all stores or one for each store. When you reset the
store password for one store, you can update all store passwords
at the same time. You can
also choose to update only one store.

This is one step in the process of creating stores and adding associates in
Endless Aisle.

1. In Business Manager, select Administration > Organization
> Users.

2. Click New.

3. Enter the information for each user/store.

4. Click Apply.

5. To assign each user to the role you created (for example, Endless
Aisle Store App):

a. Click the Roles tab.

b. Click Assign, select the role (for example, Endless Aisle
Store App) you want to assign to the user you created and click
Assign.

c. Log in to Business Manager as this user to set the password
and security question for this user.

6. Next step is specifying the BM
credentials for an Endless Aisle store.

1.13.4. Specifying the Business Manager Credentials for a Commerce Cloud Endless Aisle
Store

The Endless Aisle app requires access to the Business Manager
credentials for the store where the app is running. These credentials have
to be stored in the storeCredentials custom
object.

Note: If the credentials
expire after 90 days and are not reset, or if the wrong password is entered
into the custom object, the app flags the “Credentials Expired” check
box.
This flag causes a special alert in the Endless Aisle app. This
prevents the app from trying to log on multiple times with bad credentials,
thereby locking out the profile.

This is one step in the process of
creating stores and
adding associates in Endless Aisle.

Managers can change the
Business Manager store password from within the Endless Aisle app. If
multiple stores use the same Business Manager user (and password), when a
manager updates the password in one store, the password for all the other
stores with the same username is also changed. To configure Store Password
Expiration Notification, see
Specifying
General Endless Aisle App Settings in Business
Manager.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

38/128

1. To specify a store's credentials for the first time:

a. In Business Manager, select site > Merchant
Tools > Site Preferences > Manage Store
Associates.

b. Click Add Store Credentials to Endless
Aisle.

c. Select the store you created in the previous section.
Any store that isn't already configured in Manage Store
Associates (which is used by a storeCredentials custom object)
doesn't appear in the drop-down. See Creating a
Store for Endless
Aisle.

d. Enter the store username and password.
Alternatively, you can specify the store credentials by
adding a new storeCredentials custom object for the store id using
the Custom Object Editor. See Creating a
Business Manager User
for Each Store for Endless Aisle.

e. Click Apply.

2. To update an existing store's credentials:
Alternatively, you can specify the store credentials by editing
the storeCredentials custom object for each store id that uses that Business Manager
user using the Custom
Object Editor.

Note: You must
first change the password for the user in Business Manager. If you
change the store password in the Endless Aisle app, it changes the
user's password as
well as update the store password. Salesforce
recommends that you use the app to avoid having to follow multiple
steps of changing and updating passwords.

a. In Business Manager, select site > Merchant
Tools > Site Preferences > Manage Store
Associates.

b. Under the store, click Update Store
Password.

c. Enter the store password twice and click
Apply.

3. Next step is permission groups for
Endless Aisle associates.

1.13.5. Permission Groups for Commerce Cloud Endless Aisle Associates

A custom object called permissionGroup contains permission definitions
that drive behavior in the Endless Aisle app.

The permissions groups control application access as well as what
level of price override members of that group can do, if any.

Multiple permission groups can exist, each with different levels of
permission.

The Permission Group ID is the key to this custom object. It's the same value that is set
on the associates custom objects or selected for an associate in Manage Store
Associates. If
you import sample data, three example permission groups are created: associate, manager, and
kiosk.

Permission Description

Permission
Group ID

Permission group ID: Defines the set of permissions below
it, and it ties to the value on the associate credentials.

Login On
Behalf Of

Allow EA App Access: Lets the permission group access
the Endless Aisle app. If it isn't selected, any associate in
this permission group can't use the app.

Item Price
Overrides

Controls whether associates in this permission group can
perform item overrides, and to what level.

Fixed price override: Lets associates override an
item price to any amount, including all the way to 0.00. This
can't be limited.

By percent off (to defined max): Lets associates
price override by percent off up to the defined maximum.

By amount off (to defined max): Lets associates price
override by amount up to the calculated amount by the defined
max limit

Maximum off allowed: limit (in percent) Specifies how much
can be given off the price. 5% increments

Shipping Price
Overrides

Controls whether associates in this permission group can
perform shipping overrides, and to what level.

Fixed price override: Lets associates override a
shipping price to any amount, including all the way to 0.00.
This can't be limited.

By percent off (to defined max): Lets associates
shipping override by percent off up to the defined
maximum.

By amount off (to defined max): Lets associates
shipping override by amount up to the calculated amount by the
defined max limit.

Maximum off allowed: limit (in percent) how much can be
given off the shipping. 5% increments.

Manager
Overrides

Lets a “manager” give the discount associated with
their permission group, when a regular associate might not have the
permission to give a discount or a
discount of significant value
to satisfy a customer accommodation.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

39/128

Sales Reports Access Sales Reports at store level (including other
associates sales reports): Whether the members of the permission
group can view store sales reports

Access Sales Reports in
Associate Profile: Whether members of the permission group can see
their own sales reports; if both options are disabled, the View
Sales button doesn't appear in the app when a member of the
permission group is logged in.

Admin
Dashboard
Access

Lets the user access the Admin Dashboard in Endless
Aisle in order to configure devices, run tests and see log
output.

Note: It's highly recommend that admins manage permission group
definitions directly in Business Manager. Permission group definitions
shouldn't change frequently;
building integrations for this data isn't
necessary.

Related Links

Creating the Store App Role

Creating a Store for Endless Aisle

Creating a BM User for Each Store for Endless Aisle

Specifying the BM Credentials for an Endless Aisle Store

Managing Permissions for Endless Aisle Store Associates

Creating, Assigning, Modifying Endless Aisle Store Associates

Load Associate Credentials via Batch

Integrate in Real Time to Validate Associate Credentials

1.13.6. Managing Permissions for Commerce Cloud Endless Aisle Store Associates

This is one step in the process of creating stores and adding
associates in Endless Aisle.

1. In Business Manager, select site > Merchant Tools
> Custom Objects > Custom Object Editor.

2. Select permissionGroup from the Object Type drop-down. See Permission Groups for
Endless Aisle Associates.

a. To create a new group, click
New.

b. To edit an existing group, either click Find to view the
list of permissions groups, click the permission group ID or select a group, and click
Edit Selected. If you import
sample data, three example
permission groups are created: associate, manager, and kiosk.

3. Specify the values for the permission group and click
Apply.

4. Next step is creating,
assigning, modifying Endless Aisle store associates.

1.13.7. Creating, Assigning, Modifying Commerce Cloud Endless Aisle Store Associates

This is one step in the process of creating stores and adding
associates in Endless Aisle.

1. In Business Manager, select site > Merchant Tools
> Site Preferences > Manage Store Associates.

2. To assign associates:

a. Under a store to which you want to assign an associate, click
Assign Associates.

b. Click the Select checkbox for associates to assign to the
store.
Only associates not already assigned to the store appear in
in the table.

c. (optional) To change an associate's permission group, select
the permission group from the drop down next to the
associate.
Changing an associate’s permission group applies to the
associate across all stores to which they are assigned.

d. Click Apply.

3. To create an associate:

a. Under a store you want to assign the associate to, click
Assign Associates.

b. Click Create New Associate.

c. Enter the information for the associate, including the
permission group.

d. Click Create Associate.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

40/128

e. Click Apply.

4. To unlock an associate, deselect the button in the
Locked Out? column.

5. To unassign an associate:

a. Under the store, select the associate.

b. Click Unassign Associate.

6. To change an associate password:

a. Under the store, select the associate.

b. Click Change Associate Password.

c. Enter the new password.

d. (optional) To lock out the associate, check the
Locked Out checkbox.

e. Click Apply.

7. To change the associate's name or permission group:

a. Under the store, select the associate.

b. Click Modify Associate.

c. Modify the first name or last name.

d. (optional) To change the permission group, select the new
permission group from the drop-down.

e. Click Apply.

8. Next step is learning about loading
associate credentials via batch.

1.13.8. Load Associate Credentials via Batch

Clients can feed associate credentials into Salesforce B2C Commerce
custom objects. The app checks these credentials when attempting to
authenticate the associate to the app.
Associate POS codes are considered
sensitive information and must be treated with care. POS access codes must
be stored as one-way salted hashes, and the client is responsible for
sending the salted hash and the salt for the POS codes.

Each store's associates are loaded into a custom object via a data
feed.

The client provides the following information for each employee in the
store via a data feed.

Note: Only active employees should be in the data feed.

Clients should also manage this feed on an ongoing basis as well as
remove any non-active or terminated employees from this list.

There are two custom objects for which data is needed:

storeAssociates – information that is applicable to the store

the store ID

a list of the IDs of all associates in that store

associates – information applicable to each individual employee

Employee ID

First name

Last name

Permission group ID

Login Attempts

Is Locked Flag

Hashed POS code

Salt (unique per POS code. Client is responsible for maintaining
uniqueness of salts. It's highly recommended to change the salt
every time the POS code password is
changed.

You can use int_ocapi_ext_core/config/EA_Associates_CO.xml and
int_ocapi_ext_core/config/EA_StoreAssociates_CO.xml as an example.

Related Links

Creating the Store App
Role

Creating a Store for
Commerce Cloud Endless Aisle

Creating a BM User for Each
Store for Endless Aisle

Specifying the BM
Credentials for an Endless Aisle Store

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

41/128

Permission Groups for Endless Aisle Store Associates

Managing Permissions for Endless Aisle Store Associates

Creating, Assigning, Modifying Endless Aisle Store Associates

Integrate in Real Time to Validate Associate Credentials

1.13.9. Integrate in Real Time to Validate Associate Credentials

If the client can provide a real time API where associate permissions
can be validated, the details of the integration should be worked out with
the client during the implementation.
The following is an example of what might be needed.

Data passed to the client’s API

Employee ID

POS code

Data returned in the API

First name

Last name

Permission group ID

Is active employee

Related Links

Creating the Store App Role

Creating a Store for Commerce Cloud Endless Aisle

Creating a BM User for Each Store for Endless Aisle

Specifying the BM Credentials for an Endless Aisle Store

Permission Groups for Endless Aisle Store Associates

Managing Permissions for Endless Aisle Store Associates

Creating, Assigning, Modifying Endless Aisle Store Associates

Load Associate Credentials via Batch

1.13.10. Con�gure Endless Aisle for Uni�ed Authentication
When you migrate to Unified Authentication, you also need to update your Endless Aisle
credentials to match your Account Manager user credentials. When the Endless Aisle
configuration
is complete, you can use Account Manager to log in to Endless Aisle.

1. Select Merchant Tools > Custom Objects > Custom Object Editor,
and select Store Credentials.

2. Select the store.

3. Update the store unsername with the Account Manager email address.

4. Update the Store password with the Account Manager password.

See Also

Migration to Uni�ed Authentication Via Account Manager

1.14. Set Up the Commerce Cloud Endless Aisle App

App configuration is done either through the config files for those
things that don't change often or through the Business Manager
preferences. Any Business Manager preferences
that are changed take
effect when the associate logs in to the app.

To set up the app, you need to know the values of the following:

storefront host

storefront home

storefront site URL

ocapi site_url

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/admin/b2c_unified_login_via_account_manager.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

42/128

ocapi client id

payment terminal module (payment device)

payment entry

sites to support in Endless Aisle and which languages and currencies
for those sites

To configure multiple countries, you edit user.js. Add
configurations for additional countries, using an existing configuration
in the countryConfig section as a template.

Related Links

Specifying Endless Aisle App Settings

Specifying Tablet Settings for Endless Aisle

Specifying Address Form Per Location for Endless Aisle

Display Store Inventory in the Endless Aisle App

1.14.1. Specifying Commerce Cloud Endless Aisle App Settings

1. Copy the file user.js.sample and rename the copy user.js.

2. Make the required changes.
Don't make changes to the other configuration files in
app/assets/config. If you want to override a default setting specified
in one of those files, copy the default setting into
user.js and set
the value there. The values specified in user.js override the settings
in the other configuration files.

3. Save the file.

4. Copy the appropriate tiapp.xml file and rename it
tiapp.xml:

tiapp.xml.sample.verifone for all Verifone devices

tiapp.xml.sample.adyen for all Adyen devices

tiapp.xml.sample.ptw for Pay through Web

a. If you are upgrading from a previous version of Endless
Aisle, merge the sample file into the existing tiapp.xml file you
have already configured.

b. On line 3, enter the appropriate value as the ID, for
example:
<id>com.your-company.EndlessAisle</id>

c. Save the file.

1.14.2. Specifying Tablet Settings for Commerce Cloud Endless Aisle

1. On the iPad tap Settings.

2. As of iOS 9, to hide the shortcuts such as Next and Previous, on
the iPad, tap the Settings icon, select
General > Keyboards,
and disable Shortcuts.

3. As of iOS 9, to disable automatic capitalization, on the iPad,
tap the Settings icon, select
General > Keyboards,
and disable Auto-Capitalization.

4. Lock rotation so that the Home button is on the right, which
makes camera scanning work better.

5. Turn off Auto-Correction and Predictive for the keyboard;
otherwise entering in addresses and names can be corrected when you
don’t want them to be.

1.14.3. Specifying Address Form Per Location for Commerce Cloud Endless Aisle

Endless Aisle supports location-specific address forms. By
default, Endless Aisle provides one address form for North America and one
form for Europe. You can create and use a
different address form. If someone
using the app sets the iPad to a location for which there is no address
form, the app uses the addressForm_NA.

1. Create an address form and save it in the folder
app/assets/config/address. You can use the
app/assets/config/address/addressForm_NA.js,
app/assets/config/address/addressForm_EU.js, and
app/assets/config/address/addressForm_Asia.js as models for the new
form.

2. Edit app/assets/config/address/addressConfig.js to specify the
form to use for the countries where you want to use it.
The default address forms include:

module.exports = {
local_address : {

US : 'config/address/addressForm_NA',
CA : 'config/address/addressForm_NA',
FR : 'config/address/addressForm_EU',

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

43/128

NL : 'config/address/addressForm_EU',
GB : 'config/address/addressForm_EU',
ES : 'config/address/addressForm_EU',
DE : 'config/address/addressForm_EU',
JP : 'config/address/addressForm_Asia',
CN : 'config/address/addressForm_Asia',
default : 'config/address/addressForm_NA'

}
};

3. Save addressConfig.js.

1.14.4. Display Store Inventory in the Commerce Cloud Endless Aisle App

The app has the ability to show inventory of the current store and
of other stores in a close proximity. It uses the address of the current
store to load inventory for other stores near it.
In order for this
feature to work properly, the store data must have the address with zip
code entered.

The store object, the inventory feed, and the Endless Aisle app store
ID must be the same.

You can:

use the existing store object

Salesforce B2C Commerce has an
existing store object in {site} > Online Marketing > Stores.

The store must have the address with zip code and latitude and
longitude entered.

use inventory feed

In order for the app to locate the proper
inventory feed for each store, the inventory file ID must match that of
the store ID.

Related Links

Track Orders in Endless Aisle

Track Price Overrides in Endless Aisle

Generating GMV Reports for Endless Aisle Sales

Use Google Analytics

View Endless Aisle Sales Reports

.

1.14.5. Country, Language, Currency, and Price Books in Commerce Cloud Endless Aisle

The following are related:

The countries in which the app can run

The languages supported in each country

The name of the country as it appears in the app

The currency to use in each country

The list price book to use in each country

The sale price book to use in each country

The address form to use in each country

In practice, when you switch from one country to another on the Welcome
dialog or the login screen (if the Change Country link is enabled) in
the app, the currency, languages
supported, price books, and address
form change to the ones associated with the new country.

For example, you can specify the following configurations:

 Germany France United States

Languages
English

French

German

English

French

German

English

French

German

Display Name Germany France United States

Currency Euro Euro Dollar

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

44/128

List price book German price book French price book United States price book

Sale price book German sale price book French sale price book United States sale price book

Address form addressForm_EU.js addressForm_EU.js addressForm_NA.js

For example, a customer who lives in Germany is shopping in an airport
in France. In the store, the store associate switches from using France
as the country to using Germany, which
is where to ship the purchases.
The app switches to the German price book and uses the address form
appropriate for Germany.

The country determines the currency, price books, and address form.
Multiple languages can be available for each country.

Salesforce B2C Commerce enables you to have:

one site, one storefront

one site, multiple storefronts

multiple sites, multiple storefronts

Configuration How to change the configuration
in the Endless Aisle
app

Where to find the configuration How to add a new configuration

Country You select the country when you
start the Endless Aisle app
for the
first time or on the login screen if
the Change Country
Link is
enabled

To configure a country, look for the
countryConfig section in
the user.js.sample
file.

To add a new country, define a new country in the
countryConfig section in user.js
file.

Site The site that the Endless Aisle app
runs against is based
on the
country you select the first time
you start the app or on
the login
screen if the Change Country Link
is enabled .

To configure which site the country points to, look for
ocapi.site_url and
storefront.site_url in the
user.js.sample
file for each country in the countryConfig
section.

To add a new site, change the site_url
in ocapi
and storefront in
each country in the
countryConfig section of
user.js.

Language You select the language when you
start the Endless Aisle
app for the
first time or on the login screen if
Change Country
Link enabled.

To configure a language for a country, look for
languagesSupported in each country in the
countryConfig
section in the user.js.sample
file and the definition of that
language in the
languageConfig section in
countries.js

Each country specified in the
countryConfig
section of
app/assets/config/user.js can support
multiple languages.

To
add a new language:

1. Ensure that the site supports the language
(locale). For
example, to enable Dutch,
ensure that the locale "nl" is
enabled for the
site.

2. Add a new strings.xml file in the app/i18n
folder. For
example, for Dutch, create a
strings.xml file in a new
app/i18n/nl folder.

3. Copy the languageConfig section from
app/assets/config/countries.js to
app/assets/config/user.js.

4. Add the new language in
app/assets/config/user.js in the
languageConfig section.

5. Add the value of the new language in the
languagesSupported for each country in
which you want to support the new
language.

For details about localization in
B2C Commerce,
see Localization.

Currency The currency format that the
Endless Aisle app uses is
based on
the country you select the first
time you start the app
or the login
screen if Change Country Link
enabled. The currency
value is
based on the price book.

To configure a currency format for a country, look for
appCurrency in each country in the
countryConfig section in
the user.js.sample
file and the definition of that currency in the
currencyConfig section in countries.js. For
Sales Reports in
Business Manager, for each site, look for
currencySymbol in
the country configuration
in Endless Aisle Catalog Preferences in
Business
Manager.

Supported currencies are defined in the
currencyConfig section of countries.js and
are
associated with the country using
appCurrency in
the
countryConfig section of
app/assets/config/user.js

To add a new currency:

1. Ensure that the site supports the currency.

2. Copy the currencyConfig section from
app/assets/config/countries.js to
app/assets/config/user.js

3. Add the new currency to
currencyConfig.

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/localization/b2c_localization.html

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

45/128

4. Set the value for appCurrency to the new
currency for each country in which you
want to support the
new currency.

5. For reports in Business Manager to show
the correct
currency, set the
currencySymbol in the
country_configuration json (Endless
Aisle
Catalog Configuration).

Price Book The price books that the Endless
Aisle app uses are based
on the
country you select the first time
you start the app or on
the login
screen if Change Country Link
enabled.

To configure price books for a country, for each site, look
for
list_price_book and
sale_price_book in the country
configuration
in Endless Aisle Catalog Preferences in Business
Manager.

To add a new price book :

1. Ensure the price book specified is enabled
for the
site.

2. Ensure the price book is listed for the
product.prices.price_book_ids
config of
the
resource/products/{id}/prices in the
Shop Open Commerce API settings for
each site.

3. Add the list_price_book and
sale_price_book for the country in which
you want to support that price book in
country configuration.

Address form The address form that the Endless
Aisle app uses is based
on the
country you select the first time
you start the app or on
the login
screen if Change Country Link
enabled.

To configure the address form for a country, ensure that
the key
and the value for the country in
countryConfig in
user.js.sample file and the
key in address/addressConfig.js file
match. For the address form
definition, see the file associated
with the country in
addressConfig.js.

There are default address forms that are included
with the
Endless Aisle app in the
app/assets/config/address folder.

To
add a new address form:

1. Create a new address form in the
app/assets/config/address
folder.

2. Add the new address form for each country
in which you
want to use the address form
for in
app/assets/config/address/addressConfig.js

.

1.15. Commerce Cloud Endless Aisle Payment Devices

The Endless Aisle app supports the following payment devices:

Verifone PAYware mobile e335

Verifone e355 with Verifone firmware

Verifone e355 with Adyen firmware

Verifone P400 with Adyen software

Verifone e285 with Adyen software

Verifone VX680 device with Adyen software (for payment only, not
printing)

Verifone VX820 device with Adyen software

To integrate with a different device, you have to create a payment device
module.

Note: Your payment device should support EMV. You can check with the
manufacturer to be sure that it does. There might be additional
customization necessary to support
EMV for the full payment
integration.

Connect a Supported Payment Device to the
App

You can connect through a direct connection, Bluetooth, or
Ethernet/Wi-Fi, as indicated in this table:

Device: Can connect via:

Verifone PAYware mobile e335 Direct connect

Verifone e355 with Verifone firmware Bluetooth/direct connect

Verifone 3e55 with Adyen firmware Wi-Fi

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

46/128

Verifone VX680 device with Adyen software Wi-Fi

Verifone VX820 device with Adyen software Ethernet

Update Firmware and Libraries

There are several
components to consider when connecting to a payment device.

Hardware - For the supported payment devices, you should consult
the manufacturer for usage and troubleshooting.

Firmware - The firmware in the device is updated every so often.
Generally, you should use the latest firmware available at the start
of an implementation; however, you might
not want to update the
firmware during the development cycle, as issues can be encountered.
When the implementation is done, Salesforce doesn't recommend
updating
firmware until an app upgrade is performed.

Library - The device manufacturer supplies the library. This will
typically be an iOS (sometimes a JavaScript) library. These libraries
are generally updated on a regular basis to fix
bugs or add support
for new devices. In general, it's good practice to update this
library to the latest version whenever there is a new release or when
implementation is done
to get the latest bug fixes and support for new
devices.

Troubleshooting

Problem Solution

There are times where the Adyen shuttle is paired via
Bluetooth to the iPad, yet the
connection doesn't seem to be
set. You can often see this as a Status of Device Error in
the
Admin Dashboard. Suspending and resuming the Adyen shuttle will
correct this.
Nothing has to be done in the app.

With the Endless Aisle app up and logged in, hold the
Adyen shuttle and press the
red X down until you see
Suspending... Then press the green check mark until you see
Resuming... After this, the connection should be fine. You
should see a Status of
Initialized in the Admin
Dashboard.

Setting up Endless Aisle to use adyenDevice for payment
in the user.js file cause an
error in the console log when
building.

The error in the console log looks like
this:

[ERROR] Script Error Couldn't find module:
com.demandware.adyen

[ERROR] Script Error Module
"adyenDevice" failed to leave a valid exports object

1. In Appcelerator, edit Endless-Aisle-app/tiapp.xml .

2. In the Modules section on the right, click the +
button.

3. Select the com.demandware.adyen module and click
OK.

4. Remove com.demandware.verifone by selecting in the
Modules list and
selecting X.

Related Links

Setting Up Payment for Endless Aisle

Enabling Payment in Endless Aisle Through Adyen Device

Enabling Payment in Endless Aisle Through Verifone Device

Enabling Endless Aisle Payment Through the Web

Test the Endless Aisle Payment Device

Create a Payment Device Module

Endless Aisle in Store Wi-Fi Requirements

1.15.1. Enabling Payment in Commerce Cloud Endless Aisle Through Adyen Device

Before performing these steps, you should have specifed Endless Aisle app
settings. . You can also refer to Pairing the Payment
Device with the iPad.

1. In app/assets/config/user.js, edit the payment terminal by
specifying:

devices : {
payment_terminal_module : 'adyenDevice'

},

2. Ensure that tiapp.xml file is based on the tiapp.xml.sample.adyen
file.

3. On the VX680, do the following:

a. Press green key + 5 at the same time.

b. Get the IP address.

4. Board the Adyen device:

a. Ensure the profile you are using to log into the app is part
of a permissions group that has admin access enabled.

b. Start the Endless Aisle app on the device on which you intend
to run it in the store.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

47/128

c. Tap the Hamburger Menu and tap Admin
Dashboard.

d. Select Ethernet and entering in the ip address or hostname
and tap Save or select Bluetooth and enable Blutetooth in the
iPad Settings to connect the device Bluetooth.
(When using
Ethernet, the iPad and the device need to be on the same Wi-Fi
network.)

e. On the Payment Terminal tab, enter your Adyen username,
password, and merchant ID and tap
Login.

f. When the list of available devices appears, select the device
to use and click Board.

5. The Adyen device tells the Endless Aisle app if the signature is
needed; the app shows a dialog. After the signature is provided by
the customer, there is the option for the
associate to approve the
signature. The required setting is in the Endless Aisle Checkout
preference; the option is Adyen Signature Confirmation. See Setting Up Endless Aisle
Checkout.

6. During testing, you can copy "allow_simulate_payment": false from
app/assets/config/main.js to app/assets/config/user.js and set it to
true, however, you set this to false
before deploying the app. You
can use the iPad simulator with the Adyen device if using Ethernet
connection. See Test the
Endless Aisle Payment Device.

1.15.2. Enabling Payment in Commerce Cloud Endless Aisle Through Verifone Device

Before performing these steps, you should have specifed Endless Aisle app
settings. . You can also refer to Pairing the Payment Device
with the iPad.

1. In app/assets/config/user.js, edit the payment terminal by
specifying:

devices : {
payment_terminal_module : 'verifoneDevice'

},

2. Ensure that tiapp.xml file is based on the
tiapp.xml.sample.verifone file.

3. Board the Verifone device:

a. Ensure the profile you are using to log into the app is part
of a permissions group that has admin access enabled.

b. Start the Endless Aisle app on the device on which you intend
to run it in the store.

c. Tap the Hamburger Menu and tap Admin
Dashboard.

d. On the Payment Terminal tab, tap
Registart.

e. To test the device, tap Swipe Card or
Manual Entry.

f. Enable Bluetooth; when the list of available devices appears,
select the device to use and click
Board.

4. During testing, you can copy "allow_simulate_payment": false from
app/assets/config/main.js to app/assets/config/user.js and set it to
true, however, you set this to false
before deploying the app. You can
use the iPad simulator with the Verifone device if using Ethernet
connection. See Test the
Endless Aisle Payment Device.

1.15.3. Enabling Commerce Cloud Endless Aisle Payment Through the Web

CAUTION: If you enable payment through the web and are running on
iOS 9.3 or later, in order to be PCI compliant, you must disable the Scan
Credit Card feature in Safari. On the
iPad, go to Settings > Safari >
Autofill > Credit Cards> Slider off.

When you have enabled a payment
device, before you deploy the app you should Test the Endless Aisle Payment
Device.

1. In app/assets/config/user.js, specify:

devices : {
payment_terminal_module : 'webDevice'

},

2. In app/assets/config/user.js, ensure that payment entry is
specified as : payment_entry : 'web',

3. Copy tiapp.xml.sample.ptw to tiapp.xml and make any necessary
changes. See Specifying
Endless Aisle App Settings.

4. In tiapp.xml, ensure that the ti.safaridialog (ios) module is
included.

5. Update the web payment form as needed for your
organization.

for controllers the EACheckout-StartWebPayment controller
(int_ocapi_ext_controllers/cartridge/controllers/EACheckout.js)

for pipelines the EACheckout-StartWebPayment pipeline
(int_ocapi_ext_pipelines/cartridge/pipelines/EACheckout.xml)

the webpayment.isml template
(int_ocapi_ext_core/cartridge/templates/default/webpayment.isml)

the WebPayment.xml form.
(int_ocapi_ext_core/cartridge/forms/default/WebPayment.xml)

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

48/128

the webpayment.properties �le (int_ocapi_ext_core/cartridge/templates/resources/webpayment.properties)

© Copyright 2000-2021, salesforce.com inc. All rights reserved. Various trademarks held by their respective owners.

1.15.4. Test the Commerce Cloud Endless Aisle Payment Device
Before deploying Endless Aisle, it's essential to test the end to end
integration using test servers. When that is successful, you must then
test against production. To ensure reliability,
you should test as many
scenarios as possible, including:

Manual entry

Canceling the payment

Credit card accepted

Credit card rejected

Credit card error

When you test the Endless Aisle payment device:

Ensure that the order export and payment received is working
correctly

Test the whole order process

Test shipping a product, ensuring that it's received

Related Links

Setting Up Payment for Endless Aisle

Enabling Payment in Endless Aisle Through Adyen Device

Enabling Payment in Endless Aisle Through Verifone Device

Enabling Endless Aisle Payment Through the Web

Create a Payment Device Module

Endless Aisle in Store Wi-Fi Requirements

1.16. Create a Payment Device Module

The communication between the payment device and Commerce Cloud Endless Aisle requires the elements in the following diagram:

Devices use one of two different ways that the device can interact with
the app:

Get the card number by reading the card and pass it back to the app,
without trying to determine whether the card is valid. Verifone
interacts with the app in this way; the
JavaScript code for Verifone
fires payment:credit_card_data.

Get the card number and tell the payment module whether the payment
was approved or declined. Adyen interacts with the device in this way.
The JavaScript code for the
Adyen module fires either
payment:cc_declined or payment:cc_approved.

The payment device module consists of:

the Appcelerator module, written in Objective C, which communicates
directly with the payment device

Note: If the payment device manufacturer
provides a JavaScript API to communicate with the device, you should use
that instead of a native Objective-C API.

a JavaScript wrapper, which communicates with the Objective C
module, using the Objective C bridge

For information on how to create
an Appcelerator module and communicate between the
JavaScript/Objective-C bridge, look at the Appcelerator iOS Module
Develpment
Guide.

The entry points required in a payment device module include:

acceptPayment

cancelPayment

cancelServerTransaction

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

49/128

verifyDeviceConnection

getNoDeviceConnectionImage

getNoDeviceConnectionMessage

The exit points are all the events that are fired back to the app code,
such as:

payment:cc_approved

payment:credt_card_data

Between the entry points and exit points, you write code in the device
driver and the JavaScript wrapper.

To create a payment device module, you implement a series of functions
that the DSS app calls, starting with the JavaScript function called
acceptPayment.

The JavaScript function:

Begins the process of accepting a new payment.

Tells the module to start the process of getting the payment
information.

The process runs on a separate thread and the
acceptPayment function returns back to the caller while the device is
prompting the user for payment.

It's essential to handle all possible cases.

Handle Contactless Payment

Contactless payments
are ones in which an NFC device is placed close to the payment terminal.
It's recommended that if the country where the application will be
running supports
contactless payments, that they be enabled on the payment
terminal.

Support Built-in Printer

If the payment device
has a built in printer, it's optional whether the application uses that
printer.

Related Links

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server
Transaction

Handle
Errors

Support
Manual Card Number Entry

Support Payment with Gift
Cards

Display Whether the
Payment Device Is Connected

Configure Device in Admin
Dashboard

Support
Barcode Scanner

1.16.1. Load the Native Module

The device modules that are included with the Commerce Cloud Endless Aisle app are:

com.demandware.adyen

com.demandware.verifone

You can use these modules as a reference. (Only the JavaScript code is
available, not the native code.)

Modules are located in the modules/iphone folder. Modules are written
in JavaScript and Objective C.

Before you can accept payment, you load the native module using the
code required, for example:

var adyen = require('com.demandware.adyen');

or

var verifone = require('com.demandware.verifone');

The object contains all the native methods for the implementation.

You then add functions as needed and include the module in
tiapp.xml.

Related Links

jearl
Inserted Text

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

50/128

Create a Payment Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server Transaction

Handle Errors

Support Manual Card Number Entry

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

Support Barcode Scanner

1.16.2. Accept Payment

The most basic function is the acceptPayment(options) function. This is
the function that the Commerce Cloud Endless Aisle app calls when it's ready to accept
payment It's within
this function that Endless Aisle begins communicating
with the payment device.

For Adyen, the function looks like this for Release 1.7.2 or later:

adyen.acceptPayment = function(options){
adyen.needsSignature = false;
options.currency = Alloy.Models.basket.getCurrency();
options.order_no = Alloy.Models.basket.getOrderNo();
adyen._acceptPayment(options);

};

This function is the entry point.

The currency and order_no are
properties of the options object and are needed in the
native code for Adyen; therefore, they are added to the
options object in
acceptPayment. (It is
possible that the payment device you are implementing doesn't require
this information.)The code then calls
_acceptPayment(options), which is a native
function in
the com.demandware.adyen module. The function that calls into the native
code can be called anything; there is no requirement that it be called
_acceptPayment. The
options argument can
have properties in it when acceptPayment() is called. For
example, if manual entry is requested, there is a property called
manual set in options, which lets
the payment module know
that the device should initiate a manual entry transaction.

To enable the device to accept payment, consult the manufacturer's
library. This is the code you need to write based on the payment device
SDK.

Related Links

Create a Payment
Module

Load the Native
Module

Approve
Payment

Cancel
Payment

Cancel
Server Transaction

Handle
Errors

Support
Manual Card Number Entry

Support Payment with Gift
Cards

Display Whether the
Payment Device Is Connected

Configure Device in Admin
Dashboard

Support
Barcode Scanner

1.16.3. Approve Payment

When the payment information has been retrieved and the device returns
it, you transfer it into JavaScript. See the Appcelerator module
documentation which tells you how to
communicate across the JavaScript
bridge. For example, the Verifone device module that is included with
Commerce Cloud Endless Aisle fires the event magneticCardData. The result
is returned
across the JavaScript bridge, in JavaScript. The verifoneDevice.js code
contains an event listener for the magneticCardData event.

After the data is returned from the device, you call either one of
these events with the payment information in the payload:

the cc_payment_approved event (in versions 1.7.1 and earlier)

the payment:cc_approved event (in versions 1.7.2 and later)

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

51/128

The Adyen code looks like this:

Alloy.eventDispatcher.trigger('payment:cc_approved', {
owner: e.cardHolderName,
card_type: e.cardString,
pan: "xxxx-xxxx-xxxx-"+e.cardNumber,
month: e.cardExpiryMonth,
year: e.cardExpiryYear,
transaction_id: e.pspReference,
payment_reference_id: e.pspAuthCode,
is_contactless: false

});

For release 1.7.1 and earlier:

Ti.App.fireEvent('cc_payment_approved', {
owner: e.cardHolderName,
card_type: e.cardString,
pan: "xxxx-xxxx-xxxx-"+e.cardNumber,
month: e.cardExpiryMonth,
year: e.cardExpiryYear,
transaction_id: e.pspReference,
payment_reference_id: e.pspAuthCode,
is_contactless: false

});

At this point the payment process is complete.

Note: Different payment processors work differently. For example, Verifone
only reads the card data and returns it to the application. Therefore, a
different set of events is used.
After the data is returned from the
device, the cc_payment_entered event is fired in version 1.7.1 and
earlier. In 1.7.2 and later, the payment:credit_card_data event is
fired:

Alloy.eventDispatcher.trigger('payment:credit_card_data', {
track_1:e.track1,
track_2:e.track2,
pan:e.pan,
month:e.month,
year:e.year,
is_contactless:e.contactless == "true",
terminal_id:e.terminal_id

});

For release 1.7.1 and earlier:

Ti.App.fireEvent('cc_payment_entered', {
track_1:e.track1,
track_2:e.track2,
pan:e.pan,
month:e.month,
year:e.year,
is_contactless:e.contactless == "true",
terminal_id:e.terminal_id

});

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Cancel Payment

Cancel Server Transaction

Handle Errors

Support Manual Card Number Entry

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

Support Barcode Scanner

1.16.4. Cancel Payment

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

52/128

If the user taps the Cancel button in the dialog on the tablet, the
cancelPayment() function is called. This requires that
the following function be implemented in your payment
module:

moduleName.cancelPayment = function() {
// handle cancel

}

This function should cancel the transaction on the payment device. For
example, if the device is waiting for a card to be swiped, you would call
the device’s API to terminate that
process.

Related Links

Create a Payment
Module

Load the Native
Module

Accept
Payment

Approve
Payment

Cancel Server
Transaction

Handle
Errors

Support
Manual Card Number Entry

Support Payment with Gift
Cards

Display Whether the
Payment Device Is Connected

Configure Device in Admin
Dashboard

Support
Barcode Scanner

.

1.16.5. Cancel Server Transaction

If you upgrade to Release 1.14.1, you can call cancelServerTransaction,
for example to ensure the transaction is canceled in the app or if the
payment is approved, but there's a
condition in the app that warrants
canceling the transaction.

In JavaScript, the function looks like this:

moduleName.cancelServerTransaction = function(e) {
};

e should contain a property called "order_no".

In Objective-C, the function would look like:

-(void)cancelServerTransaction:(id)args {
}

args is an NSDictionary which contains an entry called "order_no".

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Handle Errors

Support Manual Card Number Entry

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

Support Barcode Scanner

1.16.6. Handle Errors

When a customer interacts with a payment device, various outcomes outside the successful case can occur, including:

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

53/128

The user taps Cancel on the device

The device is powered off accidentally

The device times out after a short period of no interaction

The battery on the device dies

A card isn't read successfully

If a credit card fails, it's
crucial that you provide useful errors to your associates including why
the credit card failed and what they should do next. For example, if a
credit card is
rejected for insufficient funds you might want to tell
the associate that the card was rejected and that they should contact
their bank. If a credit card fails due to an error on
swipe, the
associate will want to know that they should try the swipe
again.

A card is declined

A user is required to enter the card number manually because the
card’s magnetic strip or chip could not be read

A contactless (NFC) payment fails

The payment device times out

The user cancels the payment either through the Commerce Cloud Endless Aisle app or
the payment device

Something else unexpected happens

Note: All these cases (and possibly more) must be accounted for in your
code. The complete set depends on the functions that the payment device
supports.

The following table lists the events that can be fired back into the
Endless Aisle app to handle these cases.

Event name Description

payment_terminal:manual_card_data_on Fired when the user enables manual entry from a device.
Only used if the device has the ability to switch to manual.
(Verifone
allows this.)

payment_terminal:manual_card_data_off Fired when the user disables manual entry from a device.
Only used if the device has the ability to switch off manual.
(Verifone
allows this.)

Note: The
payment_terminal:manual_card_data_on and
payment_terminal:manual_card_data_off events are not device
specific. Firing either event from a payment module back into the
app causes the Manual button in the payment terminal
dialog to
show the correct state. In the case of Verifone, it tells the
module when it switches manual on or off, one of these
two events
is then fired back into the app.

payment_terminal:dismiss Fired to close the payment terminal dialog window in the
app. For example, when a user cancels a transaction from a device
or the
device times out.

cc_payment_error (1.7.1 and Earlier)

payment_cc_error
(1.7.2 and Later)

Fired if a payment error occurs.

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server Transaction

Support Manual Card Number Entry

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

Support Barcode Scanner

1.16.7. Support Manual Card Number Entry
All payment devices support manual card number entry. However, the way
you switch from swipe or tap to manual varies. In some cases, the only way
to switch is by using an API call.
This is how it is in Verifone. The user
must select manual from the dialog on the tablet. The app first calls
cancelPayment() in your payment module and then calls
acceptPayment()
again, passing an object with a property
named ‘manual’. This indicates that a transaction should be started where
the input is manual rather than swipe.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

54/128

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server Transaction

Handle Errors

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

Support Barcode Scanner

1.16.8. Support Payment with Gift Cards
Card readers have the ability to read data from any piece of plastic
with a magnetic strip, including gift cards. The interaction is no
different in terms of communicating with the
device. When the data is
returned to the JavaScript for a gift card, it's up to the developer to
determine the proper way to detect that the card is a gift card and not a
credit card. It
could be as simple as looking at the length of the card
number. When the card type is determined, similar to a credit card, a
specific event (payment:gift_card_data) needs to be fired,
for
example:

Alloy.eventDispatcher.trigger('payment:gift_card_data', {
track_1:e.track1,
track_2:e.track2,
is_contactless:e.contactless == "true"

});

Note: In release 1.7.1 and earlier the event is
gc_payment_entered.

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server Transaction

Handle Errors

Support Manual Card Number Entry

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

Support Barcode Scanner

1.16.9. Display Whether the Payment Device Is Connected
The Commerce Cloud Endless Aisle app appears whether the payment device is
communicating with the app. You do so by implementing the following functions in your module:

moduleName.verifyDeviceConnection = function() {
var connected = adyen._verifyDeviceConnection({});

Alloy.Router.paymentDeviceConnectionChecked(connected);
return connected;

};

moduleName.getNoDeviceConnectionImage = function() {
return "demandware/images/checkout/adyenPaymentTerminal.png";

};

moduleName.getNoDeviceConnectionMessage = function() {
return _L("No Connection To Payment Device Message Adyen");

};

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

55/128

The verifyDeviceConnection() function returns true or
false, depending on whether the payment device is connected and ready to
communicate with the app.

The getNoDeviceConnectionImage function returns an
image that provides instructions to the user about how to connect the
device.

The getNoDeviceConnectionMessage function returns a
string when there is no payment device connected.

Related Links

Create a Payment
Module

Load the Native
Module

Accept
Payment

Approve
Payment

Cancel
Payment

Cancel
Server Transaction

Handle
Errors

Support
Manual Card Number Entry

Support Payment with Gift
Cards

Configure Device in Admin
Dashboard

Support
Barcode Scanner

.

1.16.10. Con�gure Device in Admin Dashboard

Any information that needs to be configured for the payment device
needs to be done in the Admin Dashboard. The UI in the Payment Terminal
tab is created entirely in code. When
the Payment Terminal tab is loaded,
it calls two functions:

getInfoView, which populates the left side with
information about the currently connected payment device

getConfigView, which populates the right side with
a configuration UI

An example (from Verifone) of the two functions:

verifone.getInfoView = function(){
var contentView = Ti.UI.createView();
……….
return contentView;

}

verifone.getConfigView = function(){
var contentView = Ti.UI.createView();
……….
return contentView;

}

For examples of Admin Dashboard configurations, see:

the adyen.getConfigView and adyen.getInfoView functions in
app/lib/adyenDevice.js

the verifone getConfigView and verifone.getInfoView functions in
app/lib/verifoneDevice.js

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server Transaction

Handle Errors

Support Manual Card Number Entry

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Support Barcode Scanner

.

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

56/128

1.16.11. Support Barcode Scanner

If the payment terminal supports barcode scanning, it's optional
whether or not you integrate that functionality into the payment module.
The result of a barcode scan is a product
search, which can be initiated
with this code:

Alloy.Router.navigateToProductSearch({query:barcode, category_id:Alloy.CFG.root_category_id});

In this example, the barcode variable is the result that was returned from the device from the scan.

Related Links

Create a Payment Module

Load the Native Module

Accept Payment

Approve Payment

Cancel Payment

Cancel Server Transaction

Handle Errors

Support Manual Card Number Entry

Support Payment with Gift Cards

Display Whether the Payment Device Is Connected

Con�gure Device in Admin Dashboard

1.17. Commerce Cloud Endless Aisle Reports and Analytics

To track orders and analyze sales in Endless Aisle, you can:

Track Orders in Endless
Aisle

Track Price Overrides in
Endless Aisle

Generating GMV
Reports for Endless Aisle Sales

Display Store
Inventory in the Endless Aisle App

Use Google
Analytics

View Endless Aisle Sales
Reports

.

1.17.1. Track Orders in Commerce Cloud Endless Aisle

By default, all orders placed through Endless Aisle are tracked as
being through the channel DSS. The retailer might want to track sales by
store and by employee. Custom attributes
have been created to pass order
summary information about the Endless Aisle sale. These details can be
found at the end of the order export file for each order.

<custom-attributes>
<custom-attribute attribute-id="eaEmployeeId">854807</custom-attribute> //the employee’s id
<custom-attribute attribute-id="eaStoreId">125</custom-attribute> //the store number

</custom-attributes>

The Business Manager user for each store is the store’s generic
Business Manager login, “store{store number}” – example “store125” – and
this value is stored in the <created-by> field
in the order export.
Clients can load this data into their ERP systems for tracking and
reporting.

<order order-no="00000226">
<order-date>2013-06-07T16:55:26.000Z</order-date>
<created-by>store125</created-by>
<original-order-no>00000226</original-order-no>
<currency>USD</currency>
<customer-locale>default</customer-locale>
<invoice-no>00000610</invoice-no>
<customer>

<customer-no>S00000002</customer-no>
<customer-name>Samuel Adams</customer-name>
<customer-email>samadams@sample.com</customer-email>
<billing-address>

<first-name> </first-name>
<last-name>My Company</last-name>
<address1>10 Presidential Way</address1>
<city>Woburn</city>

10/2/21, 9:49 PM Commerce Cloud Endless Aisle 2.5.4

57/128

<postal-code>01801</postal-code>
<state-code>MA</state-code>
<country-code>US</country-code>

</billing-address>
</customer>
<status>

<order-status>NEW</order-status>
<shipping-status>NOT_SHIPPED</shipping-status>
<confirmation-status>CONFIRMED</confirmation-status>
<payment-status>NOT_PAID</payment-status>

</status>
<channel-type>DSS</channel-type>
<current-order-no>00000226</current-order-no>

Related Links

Track Orders in Endless Aisle

Track Price Overrides in Endless Aisle

Generating GMV Reports for Endless Aisle Sales

Display Store Inventory in the Endless Aisle App

Use Google Analytics

View Endless Aisle Sales Reports

1.17.2. Track Price Overrides in Commerce Cloud Endless Aisle
If you let associates or managers conduct price overrides, the
application passes the override data at the line item in the order
export file. It also passes the employee ID of the
associate performing
the override.

In the following example, associate 176321 performed a price override
by amount. S/he took $15 off and the reason is for a price match. The net
price is calculated after the $15
discount.

<product-lineitem>
<net-price>114.00</net-price> //the net price is after the $15 discount.
<tax>5.70</tax>
<gross-price>119.70</gross-price>
<base-price>114.00</base-price>
<lineitem-text>Floral Dress</lineitem-text>
<tax-basis>114.00</tax-basis>
<position>1</position>
<product-id>701644031220</product-id>
<product-name>Floral Dress</product-name>
<quantity unit="">1.0</quantity>
<tax-rate>0.05</tax-rate>
<shipment-id>00000610</shipment-id>
<gift>false</gift>
<custom-attributes>

<custom-attribute attribute-id="eaEmployeeId">176321</custom-attribute>
<custom-attribute attribute-id="eaOverrideReasonCode">Price Match</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideType">amount</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideValue">15</custom-attribute>

</custom-attributes>
</product-lineitem>

In the following example, associate 176321 performed a price override
by discount percentage 15% for a loyal customer.

<product-lineitem>
<net-price>34.84</net-price> //net price is after price override
<tax>1.74</tax>
<gross-price>36.58</gross-price>
<base-price>34.84</base-price>
<lineitem-text>Striped Shirt</lineitem-text>
<tax-basis>34.84</tax-basis>
<position>3</position>
<product-id>701643472376</product-id>
<product-name>Striped Shirt</product-name>
<quantity unit="">1.0</quantity>
<tax-rate>0.05</tax-rate>
<shipment-id>00000610</shipment-id>
<gift>false</gift>
<custom-attributes>

<custom-attribute attribute-id="eaEmployeeId">176321</custom-attribute>
<custom-attribute attribute-id="eaOverrideReasonCode">Loyal Customer</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideType">percent</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideValue">0.15</custom-attribute>

</custom-attributes>
</product-lineitem>

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

58/128

In the following case, a manager (id=854807) performed a price override
for associate (176321). It was a customer accommodation to set the price
to a fixed price of $25.

<product-lineitem>
<net-price>25.00</net-price>
<tax>1.25</tax>
<gross-price>26.25</gross-price>
<base-price>25.00</base-price>
<lineitem-text>Floral Jersey Dress (Petite)</lineitem-text>
<tax-basis>25.00</tax-basis>
<position>2</position>
<product-id>701644111922</product-id>
<product-name>Floral Jersey Dress (Petite)</product-name>
<quantity unit="">1.0</quantity>
<tax-rate>0.05</tax-rate>
<shipment-id>00000610</shipment-id>
<gift>false</gift>
<custom-attributes>

<custom-attribute attribute-id="eaEmployeeId">176321</custom-attribute>
<custom-attribute attribute-id="eaManagerEmployeeId">854807</custom-attribute>
<custom-attribute attribute-id="eaOverrideReasonCode">Customer Accommodation</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideType">fixedPrice</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideValue">25</custom-attribute>

</custom-attributes>
</product-lineitem>

In the following example, the associate 854807 took $2 off standard
shipping for a customer accommodation. The net price of $9.99 is after the
$2 discount.

<shipping-lineitem>
<net-price>9.99</net-price>
<tax>0.50</tax>
<gross-price>10.49</gross-price>
<base-price>9.99</base-price>
<lineitem-text>Shipping</lineitem-text>
<tax-basis>9.99</tax-basis>
<item-id>STANDARD_SHIPPING</item-id>
<shipment-id>00000610</shipment-id>
<tax-rate>0.05</tax-rate>
<custom-attributes>

<custom-attribute attribute-id="eaEmployeeId">854807</custom-attribute>
<custom-attribute attribute-id="eaOverrideReasonCode">Customer Accommodation</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideType">amount</custom-attribute>
<custom-attribute attribute-id="eaPriceOverrideValue">2</custom-attribute>

</custom-attributes>
</shipping-lineitem>

Related Links

Track Orders in Endless Aisle

Generating GMV Reports for Endless Aisle Sales

Display Store Inventory in the Endless Aisle App

Use Google Analytics

View Endless Aisle Sales Reports

1.17.3. Generating GMV Reports for Commerce Cloud Endless Aisle Sales

1. In Business Manager, select Administration > Operations
> GMV Reports.
Report status appears in the Status section. Click
Refresh to refresh your view as reports
run.

2. Click Create.

3. Specify the start and end dates for the report.

4. Select the report type: Order Journal, GMV Report per Month, Day,
or Order.

5. Select the report scope, usually your storefront site.

6. When the report is complete, click its name and then click the
name of the export file to download it.

7. Use the tool you prefer to analyze the report, which is is .CSV
format.
Items with DSS in the CHANNELTYPE column come from Endless
Aisle.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

59/128

1.17.4. Display Store Inventory in the Commerce Cloud Endless Aisle App

The app has the ability to show inventory of the current store and
of other stores in a close proximity. It uses the address of the current
store to load inventory for other stores near it.
In order for this
feature to work properly, the store data must have the address with zip
code entered.

The store object, the inventory feed, and the Endless Aisle app store
ID must be the same.

You can:

use the existing store object

Salesforce B2C Commerce has an
existing store object in {site} > Online Marketing > Stores.

The store must have the address with zip code and latitude and
longitude entered.

use inventory feed

In order for the app to locate the proper
inventory feed for each store, the inventory file ID must match that of
the store ID.

Related Links

Track Orders in Endless Aisle

Track Price Overrides in Endless Aisle

Generating GMV Reports for Endless Aisle Sales

Use Google Analytics

View Endless Aisle Sales Reports

1.17.5. Using Google Analytics with Commerce Cloud Endless Aisle

For information on creating a tracker ID, go to Google
Analytics.

1. If you are creating a new account, create a tracker ID:

a. Create a new account for Mobile app
tracking.

b. Specify Account Name, App Name, Category and Time Zone and
click Get Tracking ID. This creates the account and tracker
ID.

2. If you are using an existing account, create a tracker ID:

a. Create a new property under that account to get a Tracker
ID.

b. Select Mobile app to track.

c. Specify Tracking Method as Google Analytics
Services SDK.

d. Specify App Name, Category and Time Zone.

e. Click Get Tracking ID.

3. To set up Ecommerce reports, see the Google page: Set Up Ecommerce Tracking.

4. Set Up Analytics for
Endless Aisle.

5. To gather data for Google Analytics, the Endless Aisle app sends
events, which are incorporated in the Endless Aisle app code.

Look at app/lib/googleAnalytics.js to see additional events
that can be fired. The following is a sample event:

analytics.fireAnalyticsEvent({
category : _L('Basket'),
action : _L('Add All To Basket'),
label : currentProduct.getName() + ' (' + productIds.join(', ') + ')'
});

6. To view analytics information, log in to Google Analytics.

7. View some common statistics:

Option Description

To see Go to

what version my stores are using Audience > App Version

https://support.google.com/analytics/answer/1009612#zippy=%2Cin-this-article

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

60/128

Option Description

which stores are using Endless Aisle Behavior -> Overview -> Event Category -> Store
-> Login

which associates have logged in Behavior -> Overview -> Event Action -> Associate
Login -> Users

which customers to search for Behavior -> Overview -> Event Category -> Search
-> Customer Search

common search strings Behavior -> Overview -> Event Category -> Search
-> Product Search

which products are being viewed Behavior -> Overview -> Event Category ->
Products -> Product View

which products have been added to basket Behavior -> Overview -> Event Category -> Basket
-> Add to Basket

which customers have been added by associates using
Endless Aisle Behavior -> View full report for Event Category ->
Customer -> Create New User

all transaction data Conversion -> Ecommerce -> Transactions

1.17.6. Viewing Commerce Cloud Endless Aisle Sales Reports

In the Endless Aisle app, you can view sales figures broken down
by associate and store. Alternatively, you can view the same sales reports
in Business Manager. For additional
information, see Setting Up Endless Aisle Sales
Reports and Permission Groups for Endless
Aisle Associates.

1. To view Endless Aisle sales reports in the app, if you have the
correct permissions for sales reports, tap the Hamburger Menu icon and
tap Sales Dashboard.

2. To view Endless Aisle sales reports in Business Manager,
select site > Merchant Tools > Site
Preferences > Manage Store Associates > Endless Aisle Sales
Reports.

1.18. Coding Guidelines for Commerce Cloud Endless Aisle

When coding for Endless Aisle using Appcelerator, you should follow
these coding guidelines to keep the code consistent and easier to follow
and refactor.

Appcelerator Recommendations

You should become
familiar with the best practices from Appcelerator, including:

Coding Best Practices

JavaScript Coding Practices

Coding Standards

Guidelines for coding standards
for Endless Aisle include:

Naming
Conventions

Alloy Framework

UI View Types

Global Variables

Lifecycle for
Views

Memory Management

Listener Types

Promises

Logging

App Configurations

Themes

Localization

1.18.1. Commerce Cloud Endless Aisle Naming Conventions

http://docs.appcelerator.com/platform/latest/#!/guide/Coding_Best_Practices
http://docs.appcelerator.com/platform/latest/#!/guide/JavaScript_Coding_Standards

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

61/128

The Endless Aisle code uses common naming conventions. You should use
descriptive names so that they can be easily found.

Configuration Names
(Alloy.CFG)

Use underscores to name the configurations, for example:
price_book, allow_simulate_payment

Some configuration names are shown in Business Manager so
that the Alloy.CFG can be set up using the values in curly
braces {}, for
example: Session Timeout Dialog Display Time
{session_timeout_dialog_display_time}

Limit the size of the configuration name; use comments for
descriptions instead of long name

Controllers created in code,
not with Require in
view.xml

Alloy.createController calls set variable names as part of
$. and uses camel case to distinguish from those created in
view .xml files with
underscores, for example:
$.currentPage =
Alloy.createController('components/controllerName');

Event Names

Use a colon to be more specific in event names, such as
class:event

Use camel case for the class name

Ensure the class name matches the filename that fires
them

Filenames

Use subdirectories to group files by area in the app, for
example customer, checkout, and the like

Use index.js for the main view in the area

Use camel case for filenames, for example:
controllers/checkout/components/allOverrideType

Styles (Alloy.Styles)

Use camel case naming convention, for example:
Alloy.Styles.textFieldFont

Variable names

Avoid using single character variable names, even in event
listeners

Views (.xml files)

Use underscores for id, accessibilityLabel and class
names, for example: avs_popover_container

Related Links

Alloy Framework

UI View Types

Global Variables

Lifecycle for Views

Memory Management

Listener Types

Promises

Logging

App Con�gurations

Themes

Localization

1.18.2. Alloy Framework

Commerce Cloud Endless Aisle uses the alloy framework for creating views.

See Alloy Framework.

Controllers

Follow these guidelines in app/controllers �les:

Use model functions to fetch model data from server

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

62/128

Avoid model.fetch() calls. Instead, use
something like basket.getShippingMethods() or
basket.getBasket()

Ensure that any requests to server use
Alloy.Router.showActivityIndicator() around the
request

Use .done and
.
fail or
.always for promises; don't let failures be
missed

Use model functions to get attribute data

Avoid model.get('attribute') calls; use
model.getAttribute()
instead

Avoid model.attributes
calls; use model.toJSON()
instead if you want all attributes

Avoid model.attributes.attribute calls; use
model.getAttribute()
instead

Use getters and setters for Titanium properties

Avoid $.button.height = 3;
use $.button.setHeight(3)
instead

Avoid $.textfield.value
; use
$.textfield.getValue()
instead

Maximize code reuse instead of duplicating code

Move code to model or add to a common utils (EAUtils.js)

Section code with comments; if a section isn't needed, you can
omit the comments in the file

// ©2013-2017 salesforce.com, inc. All rights reserved.
/**
* controllers/path/name.js - Description of what controller is for
*/

//---
// ## VARIABLES

var importFunction = require('EAUtils').importFunction;
var modelName = Alloy.Models.modelName;
// logger used for output, see loggableCategories
var logger = require('logging')('unit:name', getFullControllerPath($.__controllerPath));

//---
// ## APP LISTENERS

$.listenTo(Alloy.eventDispatcher, 'eventname', dismiss);

//---
// ## UI EVENT LISTENERS

$.widget_id.addEventListener('click', handleClick);

//---
// ## MODEL LISTENERS

$.listenTo(modelName, 'sync', render);
$.listenTo(modelNameAnother, 'sync', onModelChange);

//--
// ## PUBLIC API

exports.init = init;
exports.render = render;
exports.deinit = deinit;
exports.publicFunction = publicFunction;

//--
// ## FUNCTIONS FOR VIEW/CONTROLLER LIFECYCLE

/**
* INIT
*
* @api public
*/

function init() {
logger.info('Calling INIT');
// model initialization and possibly call render
var promise = modelName.getModels();
Alloy.Router.showActivityIndicator(promise);
promise.done(function(){

// success
}).fail(function(resp){

notify(_L('message to user'), {preventAutoClose: true});
});

}

/**
* RENDER
*

* @api public
*/

i

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

63/128

function render() {
logger.info('Calling RENDER');
// any view changes go here

}

/**
* DEINIT
*
* @api public
*/

function deinit() {
logger.info('Calling DEINIT');
// clean up listeners, have to remove all addEventListeners separately
$.widget_id.removeEventListener('click', handleClick);
// any child controllers that need to be destroyed
// either via Require in xml or createController in code
$.widget_id.deinit();
// clean up model listeners and global Alloy.eventDispatcher listeners
// stops anything using $.listenTo()
$.stopListening();
// See Alloy.Controller.destroy. It's critical that this is called when employing
// model/collection binding in order to avoid potential memory leaks.
$.destroy();

}

//---
// ## FUNCTIONS

/**
* publicFunction - what this does
*
* @param {Boolean} state
*
* @api public
*/

function publicFunction(state) {
}

/**
* privateFunction - what this does
*
* @return {Boolean} something
*
* @api private
*/

function privateFunction() {
return something;

}

//--
// ## UI EVENT HANDLER FUNCTIONS

/**
* dismiss - trigger the closing of the popover
*
* @api private
*/

function dismiss() {
// fire event on this controller
$.trigger('view:dismiss', {extra: data});

}

/**
* handleClick - description about when some widget is clicked on
*
* @api private
*/

function handleClick() {
// fire global event
Alloy.eventDispatcher.trigger('eventname');

}

//--
// ## MODEL EVENT HANDLER FUNCTIONS

/**
* onModelChange - handles the model change
*
* @api private
*/

function onModelChange() {
// handle the model change

}

//--
// ## CONSTRUCTOR

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

64/128

// code to be called when controller is created

Implement init function for model setup and
creation

Implement render function for modifications
needed to the view

Implement deinit function for controller cleanup; see Memory Management for details

Adjust view visibility to hide first, make adjustments, and then
show. This avoids adjustments seen in view. Example:

viewToHide.hide();
viewToHide.setHeight(0);
viewToShow.setHeight(Ti.UI.SIZE);
viewToShow.reset(newData);
viewToShow.show();

Avoid styling view components in code.

If you are creating view components in a controller, use
$.UI.create('Type', { classes: 'class_name'] })
so that you can define the style in the ,tss file of
that
controller

Avoid use of Ti.UI.create*() because that
doesn't let you specify a class

If you need a view component that is conditionally shown use
"if" in the xml file as described in Alloy Styles and Themes.

For information on dynamic styles, see Dynamic Styles.

Views

When working in app/views files:

Use accessibilityLabel for QA MonkeyTalk testing

Define a class for generic styling and reuse

Avoid use of separate views to separate text; instead use format
string and style single label

Avoid styles in the .xml file; instead style in .tss file for
"#id" or ".class"

Avoid use of filler views, instead use top or left for
spacing

Text values for labels should go in styles or controller

Styles

When working in app/styles files:

Use id for strings, textid or titleid when available

setText has to be called in code

setTextid doesn't work after creation

Use Ti.UI.SIZE for height and width for best localization if you
can

Use fonts, images and colors from Alloy.Styles instead of
specifying in code or tss

Use webview config instead of styling in code; this can then be
changed in user.js

Allow for auto layout with less left and right specification to
layout container correctly

Horizontal - Use left and right, padding between

Vertical - Use top and bottom, padding between

Avoid use of the opposite of the previous as it doesn't center
the components and you have to manually lay out

Related Links

Endless Aisle Naming
Conventions

UI View
Types

Global
Variables

Lifecycle for
Views

Memory
Management

Listener
Types

Promises

Logging

App Configurations

Themes

Localization

http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Styles_and_Themes-section-35621526_AlloyStylesandThemes-CustomQueryStyles
http://docs.appcelerator.com/platform/latest/#!/guide/Dynamic_Styles

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

65/128

1.18.3. UI View Types

There are di�erent types of views, popovers, windows, and noti�cations in Commerce Cloud Endless Aisle.

Avoid use of <Window> and instead use <View> in xml and
use the Alloy.Dialog functionality to show the view. Review the
lib/DialogMgr.js and lib/dialogUtils.js files for up to
date
information.

There should be one window for the application

Notify/Growl

Notify messages are used to notify
the user of changes that occur in the app. These growls disappear on their
own, unless specified otherwise. If specified not to automatically close,
the user has to tap in the notification/growl to dismiss it.

Notify
messages are used to notify user of changes that happen. These growls will
disappear on their own, unless specified otherwise. If specified not to
auto close then the user has
to tap in the notification/growl for it to go
away.

Notify usage includes:

notify(errorMessage) - tells the user about something that is
happening, but doesn't require user interaction; notification fade
automatically

notify(errorMessage, {preventAutoClose:true}) - shows server
errors to the user and requires a tap to dismiss it

Example:

notify(_L('Network is unavailable.'), {
preventAutoClose : true

});
notify(_L('Network Now Available.'));

Alloy.Dialog.showNotifyGrowl
is what is used by the notify function. See lib/dialogUtils.js for
implementation details.

Dialogs

Dialogs obtain additional information
from the user and are a view on top of the main view. There are three
basic types:

Alert dialog

Confirmation dialog

Advanced custom dialog

Alert dialog
A dialog that comes up warning the user of something
and only has one button.

Example

Alloy.Dialog.showAlertDialog({
messageString : e.description,
titleString : _L('Unable to obtain payment information.')

});

Search for Alloy.Dialog.showAlertDialog for other examples.
See lib/dialogUtils.js for implementation details.

Do not
use Ti.UI.createAlertDialog() for customer facing dialogs
because it doesn't follow the look and feel of the app. This is used
for simulate visa/gift card prompts

Confirmation
dialog

A dialog that comes up that has more than one button and
is a message with two choices.

Search for
Alloy.Dialog.showConfirmationDialog for examples. See
lib/dialogUtils.js for implementation
details.

Example:

Alloy.Dialog.showConfirmationDialog({
messageString : _L('A price override has been applied to this item. Saving the item will remove the override.'),
okButtonString : _L('Confirm'),
okFunction : function() {

// now remove the override
currentBasket.setProductPriceOverride(override).done(function() {

// override removed, so continue with whatever is next
deferred.resolve();

}).fail(function() {
// override not removed, so nothing should happen next
deferred.reject();

});
},
cancelFunction : function() {

deferred.reject();
}

});

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

66/128

Advanced
custom
dialog

A custom dialog that prompts for additional information
and has two buttons.

Create an Alloy view controller for the popover

Implement init and deinit exports functions

See Memory
Management for deinit cleanup

If you add any UI components to the view without
using the view xml file, call
removeAllChildren($.view_you_added_to)

Listeners should be added with event handler functions
so the listeners can be removed

Use $.trigger to fire the events to dismiss the
dialog

continueEvent and cancelEvent used in
showCustomDialog are any events that need to remove and
clean up the dialog. Other events should be listened

continueFunction is called when continueEvent
is triggered. This function is also called when
hideAuxillaryViews is triggered, so the event data might
no
closed on logout.

cancelFunction is called when cancelEvent is
triggered

Use Alloy.Dialog.showCustomDialog to present the dialog
and handle the cleanup after the dismiss event is fired
(continueEvent). See lib/dialogUtils.js for all th

Search for Alloy.Dialog.showCustomDialog for
examples. See lib/dialogUtils.js for implementation
details.

Example 1

// bring up missing phone number dialog (note this uses options for the controller arguments)
Alloy.Dialog.showCustomDialog({

controllerPath : 'checkout/shippingAddress/addressWithoutPhonePopover',
options : {

countryCode : selectedAddress.getCountryCode()
},
cancelEvent : 'addressWithoutPhoneNumber:dismiss',
continueEvent : 'addressWithoutPhoneNumber:confirm',
continueFunction : function(event) {

if(event) { // event might not be sent b/c dialog could have been closed by hideAuxillaryViews on session t
shipAddress.phone = event.phoneNumber;
$.trigger('addressEntered', {

address : shipAddress,
email : currentCustomer.getEmail()

});
}

}
});

Example 2

// bring up payment signature (note this uses initOptions to pass options to the init method of the controller and
var paymentSignature = Alloy.Dialog.showCustomDialog({

controllerPath : 'checkout/payments/paymentSignature',
initOptions : args,
continueEvent : 'signature:dismiss',
continueFunction : function() {

// if shopping anonymously, need to ask to create an account
if (!customerIsLoggedIn && !isKioskMode()) {

createAccount(args);
}

}
});
// other events that don't affect the removal of the dialog
paymentSignature.once('signature:accepted', function(){

currentBasket.setCheckoutStatus('confirmation');
});

Whether to use a backdrop click listener:

If the view is a modal dialog, you shouldn't have a
backdrop click

If the view is a popup for optional changes, a
backdrop click should be allowed to remove the
popup

Related Links

Endless Aisle Naming
Conventions

Alloy
Framework

Global
Variables

Lifecycle for
Views

Memory
Management

Listener
Types

Promises

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

67/128

Logging

App Configurations

Themes

Localization

1.18.4. Global Variables

Avoid use of global variables or events if possible.

There are some uses of global variables, but only recommended if
these variables should persist for the lifetime of the app. These are
found in app/controllers/appIndex.js,
app/controllers/index.js, and
app/alloy.js. All global models are created in app/alloy.js and under
Alloy.Models.

Commerce Cloud Endless Aisle no longer uses Ti.App.fireEvent, but uses
Alloy.eventDispatcher. You should add trigger on controller or model,
but if you need to use a global
event, you can use
Alloy.eventDispatcher.

Related Links

Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Lifecycle for Views

Memory Management

Listener Types

Promises

Logging

App Con�gurations

Themes

Localization

.

1.18.5. Lifecycle for Views

Guidelines:

Call init once and render many times

Call init to do model loading and when done call render

Call deinit when remove view and set controller to null

When a view that is to be reused is hidden, it can

stop listening for model changes so that it doesn't render when
not being shown, and then always render when going back to the
view

or keep listening for model changes, but don't render, instead
set a flag and then when going back to the view, if any model
changes happened that it cares about, it can
then render

Windows that persist:

Home categories

PDP

bundle

product

set

Product search

Customer search

Customer profile

Checkout tabs

Cart

Shipping

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

68/128

Billing

Ship methods

Payments

Windows that should be dismissed:

Price overrides

Remove overrides (components/removeOverride)

Customer order details

Message dialogs

Popup

AVS

errorPopover

Windows

noPaymentTerminal

Related Links

Commerce Cloud Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Global Variables

Memory Management

Listener Types

Promises

Logging

App Con�gurations

Themes

Localization

.

1.18.6. Memory Management

It's important that you are aware of the memory usage of views you create within Commerce Cloud Endless Aisle.

If you are creating a new view that doesn't need to persist for the
life of the application, you need to ensure that you clean up correctly
and monitor the memory of the app for
leaks

When a view is closed, the memory usage of the app should return to
what it was before the view appeared

Upon logout of the application, the appIndex and any subviews
created are removed (deinit called)

See Managing Memory and Finding Leaks.

The patterns the app uses are implemented in the deinit function:

Create an exports.deinit function in your controller

Add $.destroy() at the end of deinit

Cleaning Up Alloy Controllers

Destroying Data Bindings

Add $.stopListening() if any models are used by the view

Also use this if calling $.listenTo() in the controller

Ensure that all parents that create this controller are calling
deinit on this included controller (either with createController or
Require in xml files)

If using Alloy.Dialog.showCustomDialog, deinit is
automatically called on continueEvent and cancelEvent

Clean up any Requires done in xml files by calling deinit on those
ids

Look for any <Require id="view_id" src="../topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/.."/> in view xml
file

Call deinit on that, if needed

view_id is what you specify

http://www.tidev.io/2014/09/18/cleaning-up-alloy-controllers/
http://docs.appcelerator.com/platform/latest/#!/guide/Destroying_Data_Bindings

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

69/128

$.view_id.deinit();

Look for any createController calls in js file

Call deinit on that if needed by using a global variable of
$.<id> for the controller and then not having to declare
var

Look for any <* id="<view>"
on<Eventname>="<function>"> listeners in view xml file

Call $.<view>.removeEventListener(<eventname>,
<function>);

Look for any $.listenTo calls

$.stopListening for those specifically, if you need to outside
of deinit, if you are creating again (function that adds listener is
called more than once)

Use $.stopListening() to remove all

Look for any *.addEventListener calls

*.removeEventListener for those, there is no global remove for
this

Search for $.<view>.add(…) and then call
removeAllChildren($.<view>) on view that is being added to in
code

Use removeAllChildren($.<viewid>) to recursively remove
all children

Clean up table rows that require a deinit

Look for any uses of reset on a table and the TableViewRow of
that table requires a deinit

Not all tables require this as they don't have rows with
deinit

If you call reset, you must deinit the rows before if
the rows require a deinit

Use code like this in a function to be called in deinit of
the function and before any reset calls on the table

if ($.table_id.getSections().length > 0) {
_.each($.table_id.getSections()[0].getRows(), function(row) {

row.deinit();
});

}

Related Links

Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Global Variables

Lifecycle for Views

Listener Types

Promises

Logging

App Con�gurations

Themes

Localization

1.18.7. Listener Types

There are di�erent types of listeners in Commerce Cloud Endless Aisle.

Models

Fire for new events that are not already handled by Backbone

model.trigger('event');

Listen

$.listenTo(model, 'event', function);

Cleanup

$.stopListening(); // stops all model
listeners

UI Events from Titanium

Fire

fired by the component with
$.componentid.fireEvent('event');

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

70/128

Listen

$.componentid.addEventListener('event',
function);

Cleanup

$.componentid.removeEventListener('event',
function);

Controllers Triggering Events

Fire

$.trigger('event');

Listen

controller.listenTo('event', function);

controller.once('event', function); //
cleanup not needed

Cleanup

controller.stopListening('event',
function);

Global App Listeners

Fire

Alloy.eventDispatcher.trigger('eventname');

Listen

In backbone model (controller) -
$.listenTo(Alloy.eventDispatcher, 'eventname',
function);

Non backbone model (lib directory) -
Alloy.eventDispatcher.listenTo(Alloy.eventDispatcher,
'eventname', function);

Cleanup

$.stopListening(); // stops all backbone
events

Related Links

Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Global Variables

Lifecycle for Views

Memory Management

Promises

Logging

App Con�gurations

Themes

Localization

1.18.8. Promises

Promises are used in Commerce Cloud Endless Aisle for asynchronous calls to the server.

Be sure to cover failure cases and display messages to the user

Use always for resolving the deferred that is used for
Alloy.Router.showActivityIndicator(), so that the activity indicator
goes away properly

Use _.Deferred with done, fail, or always

See Category: Deferred Object.

Related Links

Endless Aisle Naming
Conventions

Alloy
Framework

UI View
Types

Global
Variables

https://api.jquery.com/category/deferred-object/

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

v 71/128

Lifecycle for Views

Memory Management

Listener Types

Logging

App Con�gurations

Themes

Localization

.

1.18.9. Logging

Logging in the Commerce Cloud Endless Aisle app is used to show messages for debugging/troubleshooting.

To use logging, create a logger variable: var logger =
require('logging')('category', 'filepath');

The category is used in loggableCategories config
to turn on logging; see app/assets/config/main.js for information on
using loggableCategories and categories

See Loggable Categories.

For controllers, filepath can be:
getFullControllerPath($.__controllerPath), otherwise
provide a path to the js file including the app directory, for example,
'app/lib/EAUtils'

To log output, use one of the following functions on the logger
variable created previously if one doesn't already exist:

logger.info('message') Output a log message for the category you defined when
creating the logger

logger.trace('message') Similar to info, but also gives you information about
elapsed time b/w trace calls

Use 'trace' in
loggableCategories to enable

logger.log('category', 'message') You can log in a category that is different from the
one you specified when you defined the logger

logger.secureLog('message', 'category') The 'category' parameter is optional and used if you
want to log for another category

It only outputs when on
the simulator and is meant for secure data (customer, password
and payment information)

logger.error('message') Log an error message (appears in red and always
appears regardless of loggableCategories)

Avoid use of Ti.API.info and Ti.API.debug because they can't be
disabled

Most common used loggableCategories - 'request', 'request-response',
'storefront', 'storefront-response', 'ocapi', 'ocapi-response', 'all',
'trace'

Any time you add a new call to Ti.Network.createHTTPClient, add a
logger.log('request', '<description>') for 'request' and
logger.secureLog('<description>', 'request-response')
for
'request-response' so you can see all calls made to server

Related Links

Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Global Variables

Lifecycle for Views

Memory Management

Listener Types

Promises

App Con�gurations

Themes

Localization

.

1.18.10. App Con�gurations

There are di�eren

i
t types of con�gurations used by Commerce Cloud Endless Aisle.

i

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

72/128

Configuration Files

Set on a per app build basis

app/config/*.js (and config.json)

User overrides go in app/config/user.js

Configuration partitioned in separate configuration files

Use Alloy.CFG in code to access these configurations

App Preferences

Allows configuration changes after the application is built

Alloy.CFG configurations are used and set in Admin Dashboard via
app/assets/config/admin.js config

Business Manager Configurations

Allows configuration after app is built and without access to the
iPad

New custom attributes need to be added to
int_ocapi_ext_core/config/EA_metadata.xml as well as which grouping
they are in

Any set of string attributes or defaults can be set in
int_ocapi_ext_core/config/EA_Preferences/sites/SiteGenesis/preferences.xml

Can be set via custom attributes on Site Preferences or Store
system objects

To send configurations back set the label to have the Alloy.CFG
configuration name in curly braces ({})

For example: DIS Image
Service Base URL {disImageService.productionBaseUrl} is
Alloy.CFG.disImageService.productionBaseUrl in Endless Aisle

For more information on Business Manager con�guration, see Adding an Endless Aisle App Con�guration to Business Manager.

Related Links

Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Global Variables

Lifecycle for Views

Memory Management

Listener Types

Promises

Logging

Themes

Localization

1.18.11. Themes

De�ne styles for font, colors and images in theme �les.

Use Alloy.Styles to access theme properties

Theme to use is specified in user.js

See Alloy Styles and Themes.

Related Links

Commerce Cloud Endless Aisle Naming
Conventions

Alloy
Framework

UI View
Types

Global
Variables

Lifecycle for
Views

Memory
Management

Listener
Types

Promises

Logging

http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Styles_and_Themes

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

73/128

App Configurations

Localization

1.18.12. Localization

Guidelines for localization include:

Avoid putting strings in images because these are not localized

_L('Text String.') is what to use in controllers for any shown
strings to the user

in the strings.xml file you have <string
name="_Text_String_" context="some.location.msg">Text
String.</string>

If possible set string in tss file, use controller only for
conditional text changes, or when creating components in
controller

Avoid defining strings in the xml file, instead use tss file

In tss files, use textid or titleid if available, if not then use
L('_Text_String_'), can't use _L() in tss files

hintText: L('_Text_String_')

textid: '_Text_String_'

titleid: '_Text_String_'

log output doesn't need to be localized

Don't concatenate localized strings in code:

Use this pattern:

notify(_L('Item' + (productInfo.quantity > 1 ? 's' : '') + ' updated in the cart.'));

This
lets you have strings for translation like this with full
sentences:

<string name="_Item_updated_to_the_cart_">Item
updated to the cart.</string>

<string name="_Items_updated_to_the_cart_">Items
updated to the cart.</string>

Instead of having sentences broken up and harder to
translate. With a string '_Item', '_Items', and
'__updated_in_the_cart' all broken up and harder to translate
to a new language.

Don't use this pattern:

var items = _L('Item');
if(productInfo.quantity>1) {

items = _L('Items');
}
notify(items + _L(' updated in the cart.

Strings should be full sentences; if you need to insert a code
variable into the string use String.format like this (or use %s for
strings):

notify(String.format(_L('Item' + (product.quantity > 1 ? 's' : '') + ' # %d added to the cart.'), count+1));

The
strings file entries looks like this:

<string name="_Item____d_added_to_the_cart_">Item # %d added to the cart.</string>
<string name="_Items____d_added_to_the_cart_">Items # %d added to the cart.</string>

Related Links

Commerce Cloud Endless Aisle Naming Conventions

Alloy Framework

UI View Types

Global Variables

Lifecycle for Views

Memory Management

Listener Types

Promises

Logging

App Con�gurations

Themes

1.18.13. Use Endless Aisle with the Storefront Reference Architecture

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

74/128

To use Endless Aisle with the Storefront Reference Architecture (SFRA), address the following SFRA code changes in your Endless Aisle code.

isml

In SFRA, these is no concept of different forms. Instead, you fetch the countries and states from a single form.

In countriesstatesjson.isml replace:

<isset name="countryname"
value="${pdict.CurrentForms.customeraddress.country.options}"
scope="pdict" />, <isset name="countryname"
value="${pdict.CurrentForms.billingaddress.country.options}"
scope="pdict" /> & <isset name="countryname"
value="${pdict.CurrentForms.shippingaddress.country.options}"
scope="pdict" />

with:

<isset name="countryname"
value="${pdict.CurrentForms.address.country.options}" scope="pdict" />

In SFRA, states.stateUS and states.state is replaced with
States.stateCode

In countires.isml replace:

<isif condition="${countryCode == 'US' &&
!empty(pdict.CurrentForms.states.stateUS.options)}">

with:

<isif condition="${countryCode.toUpperCase() == 'US'&&
!empty(pdict.CurrentForms.states.stateCode.options)}">

Methods

In SFRA, the following methods are removed and replaced.

GetApplicableShippingMethods.ds

Replaced with

getApplicableShippingMethods in shippingHelpers.js. With this method, you must pass exact
arguments. getApplicableShippingMethods(shipment, address).

UpdateShipmentShippingMethod.ds

Replaced with

selectShippingMethod in shippingHelpers.js. With this
method, you must pass exact arguments. selectShippingMethod(shipment,
shippingMEthodID,
shippingMethods, address).

PrecalculateShippingMethod.ds

Replace with a combination of files from the totals.js model and the
shippingMethod.js model.

Files

In SFRA, the following files are removed and their functions and methods replaced.

dw.ocapi.shop.basket.calculate is deprecated.

Replaced with dw.order.calculate which implements
dw.ocapi.shop.basket.calculate.

ValidateCartForCheckout.ds

Replaced with validateBasket.js. This file contains
validateBasket, a method that takes in arguments for
basket and ValidateTax.

SetOrderStatus.ds

Replaced with the function placeOrder in
checkoutHelpers.js. placeOrder calls
OrderMgr.placeOrder and also sets the order status.

BASIC_CREDIT.js

Replaced with basic_credit.js. This file contains Authorize(),
a function that takes exact arguments. Authorize(orderNo, PaymentInstrument,
paymentProcessor).

EmaiModel.js

Replaced with sendConfirmationEmail(), a function in checkoutHelpers.js that
takes inputs order and locale.

Utils.ds

Replaced with EAPaymentFulfilled.ds, a method that includes functions
calculatePaymentInstrumentBalanceAmount, and
removeExistingPaymentInstruments.

App_storefront_controllers

Replaced with calculate.js. calculate.js requires the same app_storefront_contollers
configurations.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

75/128

Storefront API Calls

pay through web is not supported with an SFRA implementation of Endless Aisle..

1.19. Customize the Commerce Cloud Endless Aisle App

You can customize the Endless Aisle reference app to suit your
organization’s needs. Customization generally falls into the following
categories:

Changing the look of the app

Specifying the payment method

Adding custom data to existing models

Creating new models and controllers, adding tabs, and modifying
existing templates

Integrating with new hardware and integrating existing iOS apps with
Endless Aisle

Before you begin:

Determine which features you want to modify

Ensure you have the resources to do the modification

Become familiar with the code

Related Links

Change the Look of the Endless Aisle App

Setting Category Images for the Endless Aisle Home Page

Enable Address Veri�cation in Endless Aisle

Customize Emails Sent by Endless Aisle

Add Custom Data to Existing Models in Endless Aisle

Debug the Endless Aisle App

Endless Aisle Loggable Categories

Running Endless Aisle in the Simulator

1.19.1. Change the Look of the Commerce Cloud Endless Aisle App

A common customization is to modify the look of the Endless Aisle app. Often this includes changing app colors and fonts.

Copy Existing Files
Before performing any
customization, you first copy the default reference app files, leaving the
original files intact.

1. Determine the name to use for your customization files.

You
should choose a name to use for all customization files and folders.
For example, if your organization is Sample Company and Sons, you
might decide to name all files for
customization “scs”. In that case,
the copy of the demandware.js file would be scs.js. In these steps,
the file name is <your_organization>, as in
<your_organization>.js.

2. Create a folder in the app/assets folder that is named using the
name you selected in step 1.

3. Copy the file app/assets/alloy/styles/demandware.js and rename
it.

The copy of the file should be in the same directory as the
original file. Name it using the name you selected in step 1.

4. Create the folder app/themes/<your_organization> to match
the name you selected in step 1.

See
http://docs.appcelerator.com/platform/latest/#!/guide/Alloy_Styles_and_Themes-section-src-35621526_AlloyStylesandThemes-Themes
for more information.

When you have completed these steps, the
items in the right column are created.

Default file/folder structure Customization files / folder structure

app/assets/demandware

app/assets/demandware/images/*.*

app/assets/<your_organization>

app/assets/<your_organization>/images/*.*

app/assets/alloy/styles/demandware.js app/assets/alloy/styles/<your_organization>.js

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

76/128

 app/themes/<your_organization>/*.*

Change App Colors

You can change the colors in
the Endless Aisle app. There are three places where colors are
defined:

app/assets/alloy/styles/<your_organization>.js

in the .tss files, which are in the app/styles folder

in some JavaScript files

The file app/assets/alloy/styles/demandware.js contains the
style definitions for colors and fonts. All of the colors and fonts in the
app are based on these definitions.

In addition, some colors come
from images; you might need to update those.

Change App Fonts and Styles

To customize the
fonts, you modify the file
app/assets/alloy/styles/<your_organization>.js. You can also add new
font definitions and use those in the app. You add new fonts in
app/assets/fonts.

Change Images

The Endless Aisle app uses images
as the background for buttons. Images are also used for icons.

To
change an image:

1. Look in the app/assets/demandware/images folder to determine the
name of the image you want to replace.

For example, you determine
that the app/assets/demandware/images/Default-Landscape.png file
contains the image you want to replace..

2. Create the new image and copy it to
app/assets/<your_organization>/Default-Landscape.png,
overwriting the existing file.

You don't change the contents of the
app/assets/demandware/images folder. Also, ensure that the file name
is the same as the original file, with the same file
extension.

3. Edit the app/assets/alloy/styles/<your_organization>.js file
to point to <your_organization>/images/Default-Landscape.png
instead of demandware/images/Default-
Landscape.png.

Change the App Icon

Note: You can change the name
of the appicon.png file, but you can't change its location. Titanium
expects the images named in the Icon field of tiapp.xml to be in
Resources/iphone, which isn't where you put the files, but instead place
them in app/assets/iphone. During the Titanium build the app/assets/iphone
files are moved to
Resources/iphone. Because Endless Aisle is using Alloy,
they need to be in app/assets/iphone. The icon can be in the following
formats:

<name>-72.png' - 72x72px icon for iPad

1. Create an app icon in PNG format, named appicon.png, that is 57x57
pixels.

2. Create an app icon in PNG format, named appicon-72.png, that is
72x72px.

3. Replace the images in app/assets/iphone with these files.

Change the Splash Image

1. Create a splash image in PNG format, named Default-Landscape.png,
that 1024x768pixels.

2. Create a splash image in PNG format, named
Default-Landscape@2x.png, that is 2048x1536 pixels.

3. Replace the images in app/assets/iphone with these files.

4. Update the Default-Landscape.png files in your
app/assets/<your_organization>/images/ following the steps in
“Change images”.

Specify the Theme to Use

1. Add the following to app/assets/config/user.js, then save the
file: theme :
'<your_organization>',

2. Replace <your_organization> with what you selected as the
name to use for your customization files.

Modify the App Layout

The elements that comprise
the UI are placed on the screen in a layout, either horizontal or
vertical. Although you can change the layout, you should be aware of the
impact on other
UI elements.

An example of a horizontal layout is
defined in the XML file app/views/customerSearch/index.xml, in which the
secondary navigation bar contains a Back button, a divider, and the
search
results.

<View class="customer_results_header">
<Button id="breadcrumbs_back_button" class="breadcrumbs_back_button" accessibilityValue="breadcrumbs_back_button"/>
<View class="vertical_separator"/>
<Label id="search_results_count" accessibilityValue="search_results_count"/>

</View>

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

77/128

As specified in the TSS file by layout:
‘horizontal’, the elements of the customer results header appear
horizontally within the customer_results_header.

back button |
separator | search results count

'.customer_results_header': {
backgroundColor: Alloy.Styles.color.background.medium,
width: '100%',
height: 44,
layout: 'horizontal'

},

An example of a vertical layout is defined in the XML file
app/views/customerSearch/index.xml, in which the customer search results
container contains at least one customer result
row.

<View id="results_table_container">
<TableView id="results_container" dataCollection="$.customers" dataTransform="transformCustomer">
<Require src="../topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/customer/components/customerResultRow"/>
</TableView>

</View>

As specified in the TSS file by layout: ‘vertical’, the
customerResultRows appear vertically within the customer
results_container.

'#results_table_container': {
layout: 'vertical',
height: 475,
width: '100%',
top: 0

},

'#results_container': {
separatorStyle: 'transparent',
layout: 'vertical'

},

Related Links

Customize the Endless Aisle App

Setting Category Images for the Endless Aisle Home Page

Enable Address Veri�cation in Endless Aisle

Customize Emails Sent by Endless Aisle

Add Custom Data to Existing Models in Endless Aisle

Debug the Endless Aisle App

Endless Aisle Loggable Categories

Running Endless Aisle in the Simulator

.

1.19.2. Setting Category Images for the Commerce Cloud Endless Aisle Home Page

1. In Business Manager, select site > Merchant Tools
> Products and Catalogs > Catalogs.

2. Click the ID of the catalog that is assigned to your site.

3. For each category in your catalog:

a. Click Edit for the category.

b. On the Category Attributes tab, in the Presentation
Attributes section, click Select to the
right of the Thumbnail image.

c. Select the language for the image.

d. Upload or select the image.

4. Click Apply.

1.19.3. Enable Address Verification in Commerce Cloud Endless Aisle

The Endless Aisle app supports integrating with a third party address
verification service (AVS). In addition to enabling AVS in Business
Manager, you modify the server-side and app
code and enable AVS in
Business Manager. To enable Address Verification, see Specifying
General Endless Aisle App Settings in Business Manager.

To modify the server-side code:

1. Open the file
int_ocapi_ext_core/cartridge/scripts/requests/AddressValidationRequest.ds.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

78/128

2. Edit the code in the try/catch block. The code that is included in
the Endless Aisle server-side code is a hard coded example.

3. In AddressValidationRequest.ds, you pass the results from the
address verification service to formatResults. When you handle the
results, you might have to make
modifications to the response so that it
is in the format expected.

4. If verification fails (due to invalid or alternate addresses), set
status to PIPELET_ERROR.

To modify the app code:

1. Make modifications to the customer, shippping and billing address in
Endless Aisle to support the change in address display.

2. Edit the following files as appropriate to adjust the display of the
address coming back from AVS.

app/lib/EAUtils.js - for addressVerification

app/models/recommendedAddress.js – for getCityStateZip

app/controllers/components/avsPopover.js

Related Links

Customize the Endless Aisle App

Change the Look of the Endless Aisle App

Setting Category Images for the Endless Aisle Home Page

Customize Emails Sent by Endless Aisle

Add Custom Data to Existing Models in Endless Aisle

Debug the Endless Aisle App

Endless Aisle Loggable Categories

Running Endless Aisle in the Simulator

1.19.4. Customize Emails Sent by Commerce Cloud Endless Aisle

Endless Aisle sends an email to customers:

when they create an account

when they complete an order

The templates for emails sent by the Endless Aisle app are located in
the server code, in int_ocapi_ext_core/cartridge/templates/default/mail.
The text of the messages is stored in
the
int_ocapi_ext_core/cartridge/templates/resources/account.properties
file.

For controllers, in
int_ocapi_ext_controllers/cartridge/controllers/EAOrder.js, search for
sentFrom and change the email address; there is one instance.

For pipelines, In
int_ocapi_ext_pipelines/cartridge/pipelines/EAOrder.xml, search for
MailFrom and change the email address; there are two instances.

For email that is sent when a customer is created, in
int_ocapi_ext_core/cartridge/scripts/hooks/createCustomerAccount.js,
search for setFrom and make the appropriate
changes.

To change the text, edit strings in the account.properties file.

Related Links

Customize the Endless Aisle
App

Change the Look
of the Endless Aisle App

Setting Category Images
for the Endless Aisle Home Page

Enable Address Verification in
Endless Aisle

Add Custom Data to Existing
Models in Endless Aisle

Debug
the Endless Aisle App

Endless Aisle Loggable
Categories

Running
Endless Aisle in the Simulator

1.19.5. Add Custom Data to Existing Models in Commerce Cloud Endless Aisle

You can add data to existing models. For example, you might want to add
the store employee’s department to the associate model. The goal of this
example is to show the store
associate’s department in the app header.
You modify the data that ‘feeds’ the model, including the custom object
and the server code that gets the custom object data. You then
modify the
app code so that it shows the new data.

Modify the Custom Object

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

79/128

There is a custom
object defined for store associates. To add a department, you modify the
custom object.

1. In Business Manager, select Administration > Site
Development > Custom Object Types.

2. Select associates and click the
Attribute Definitions tab.

3. Click New and enter:

ID - department

Display Name - Department

Help Text - The department the associate works in

Value Type - String

4. Click Apply, then click
Back to return to the list of attributes.

5. Click the Attribute Grouping tab, click
Edit next to the associate's attribute
group.

6. Click the ellipsis (…), click the checkbox next to department, and
click Select.

7. Go to site > Merchant Tools >Custom
Objects->Custom Objects Editor.

8. Find the object type associates.

9. Select an associate.

10. Enter Men as the Department. (You can do this for any and every
associate.)

Modify the Server Code

You modify the server
code so that it can get the department information from the
server.

To determine what code to modify:

1. Look in the model: app/models/associate.js.

2. Determine what urlRoot is called: EAAccount-AgentLogin.

3. Follow the logic through the pipeline or controller to determine
what other pipelines and scripts are called for an associate login:

AgentLogin calls the AssociateLogin node.

The AssociateLogin node calls the actions/checkUser.ds
script.

The actions/checkUser.ds script calls api/Authorize.ds.

To modify the script:

1. Open the file api/Authorize.ds

2. Search for firstName and then add this line:
this.associateInfo.department =
storeAssociates.employee.custom.department

Modify the Client Code

On the client side, in
the renderStandard function, modify this bit of code.

var associateInfo = currentAssociate.getAssociateInfo();
if (associateInfo) {

var firstName = associateInfo.firstName;
var lastName = associateInfo.lastName;
var dept = associateInfo.department;

var associateText = firstName ? firstName + ' ' : '';
associateText += lastName ? lastName[0] + '.' : '';
if (dept) {

associateText += ' (' + dept + ')';
}

if (!firstName && !lastName) {
associateText = _L('Associate');

}
$.associate_label.setText(associateText);
}

Test the Modifications

When you run the updated
code and log in as the store associate for whom you added the department,
the app header should show the department after the associate's
name.

Related Links

Customize the Endless Aisle
App

Change the Look
of the Endless Aisle App

Setting Category Images
for the Endless Aisle Home Page

Enable Address Verification in
Endless Aisle

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

80/128

Customize Emails Sent by Endless Aisle

Debug the Endless Aisle App

Endless Aisle Loggable Categories

Running Endless Aisle in the Simulator

.

1.19.6. Debug the Commerce Cloud Endless Aisle App

You can gather debugging information while running the app.

Set Loggable Categories

You set the loggable categories that appear in the Admin Dashboard. When you initially
start viewing logs, you might want to specify "all" to ensure you get as much
information as
possible.

You
can set the loggable
category to be very specific. When you set a loggable category, all
of its sub-categories are also logged. For more details, see Logging.

Run the App in the Simulator and iPad

When customizing the Endless Aisle app, you run the app in the simulator. When ready,
you can then deploy the app to a device, such as an iPad.

You can use the same wifi when running the app in the simulator
and on the device.

The simulator doesn't support connecting to payment devices,
except for Adyen devices over Ethernet, in which case the device and
simulator must be on the same network.
To test payment in the
simulator, you enable simulating payment in user.js by setting
allow_simulate_payment : true . Before deploying the
app to a device, you should
disable simulating payment.

View the Console for the Device

When you have
deployed the Endless Aisle app to a device, such as an iPad, you can
connect the device to your development machine to view the console log of
the device.

1. Install the app on the device.

2. Start the Endless Aisle app.

3. Open Xcode.

4. Click the Devices tab.

5. Select the device that is connected to the iPad.

6. Select the console for the device.

Debug in the Store

You should set up error logging for Endless
Aisle. If a store associate encounters a JavaScript error in the
app, a dialog appears with the error, for example "Can't find variable:
items at
enterAddressNoState.js (line 45)". The associate can enter
information about what actions they were performing and send that
information to the admin email address.

Use the Admin Dashboard

To access the Admin
Dashboard in the app, tap the Hamburger Menu and select Admin Dashboard.
You can use the Admin Dashboard while customizing and debugging the app or
even in the store to gather information including:

The version of the app

App settings:, the store, app timeout, whether simulate payments
and image zoom are enabled, and store availability settings

The storefront host URL, OCAPI base URL, and OCAPI client ID

To assist in debugging, the Admin Dashboard also lets
you:

Clear the locally stored catalog and product data from the
cache

Email the app configuration data to the address specified when you
set up error logging for
Endless Aisle.

Run unit tests and basic functionality tests

The model tests
that are available with the Endless Aisle source are configured to run
with the out-of-the-box app. To be able to test your app, you modify
the data that the
tests use. To change the data that the tests use,
you modify the app/assets/config/modelTest.js file. You should specify
data that is valid for all the stores where the app is
deployed.
When you run the tests, you should be aware that they use the
current login session. You shouldn't be shopping on behalf of a
customer; the tests can modify basket
contents. You also might not
want to be logged in as an associate (other than the one specified in
the app/assets/config/modelTest.js file).

Note: You can run only
one test at a time.

View and email logs for loggable categories that you specify on the fly

View Server Code Logs

To view the Endless Aisle
server logs you configure Business Manager.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

81/128

1. Set Up Server Side
Logging.

2. In Business Manager, select Administration > Site
Development > Development Setup to check the server
logs (error*.log).

Related Links

Change the Look of the Endless Aisle
App

Setting Category Images
for the Endless Aisle Home Page

Enable Address Verification in
Endless Aisle

Customize Emails Sent by Endless
Aisle

Add
Custom Data to Existing Models in Endless Aisle

Endless Aisle Loggable
Categories

Running
Endless Aisle in the Simulator

© Copyright 2000-2021, salesforce.com inc. All rights reserved. Various

1.19.7. Commerce Cloud Endless Aisle App Logging Categories

You can set loggable categories
when debugging the Endless Aisle app.

Copy the loggableCategories setting from app/assets/config/main.js to
app/assets/config/user.js and edit user.js to set the loggable categories,
for example: loggableCategories
: ['ocapi',
'ocapi-response'],

For details on how to add additional logging to the code, see Logging.

analytics
analytics:googleAnalytics

application
application:alloy

application:appConfiguration

application:appIndex

application:appResume

application:appSettings

application:backgroundSync

application:index

application:PagingControl

application:timers

application:Validations

associate associate:login

checkout
checkout:billingAddress:index

checkout:cart:index

checkout:cart:productItem

checkout:components:orderTotalSummary

checkout:components:paymentSummary

checkout:components:promotionSummary

checkout:components:qrCode

checkout:components:shippingSummary

checkout:confirmation:createAccount

checkout:confirmation:index

checkout:confirmation:printerChooser

checkout:index

checkout:payments:gcBalanceDetails

checkout:payments:index

checkout:payments:noPaymentTerminal

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

82/128

checkout:payments:paymentSignature

checkout:payments:paymentTerminal

checkout:shippingAddress:enterShippingAddress

checkout:shippingAddress:index

checkout:shippingMethod:index

components
components:appSettingsView

components:avsPopover

components:ConfirmationDialog

components:customerPopover

components:dropdown

components:errorPopover

components:header

components:megaMenu

components:nextPreviousToolbar

components:notifyGrowl

components:selectWidget

components:startupPopover

components:welcomePopover

customer
customer:components:address

customer:components:addresses

customer:components:addressTile

customer:components:editProfile

customer:components:history

customer:components:order

customer:components:profile

customer:index

customerSearch:index

customerSearch:search

devices
devices:barcodeScanner

devices:printer

images
images:disImageServiceMethods

images:dwImageServiceMethods

images:imageUtils

localCache

models
models:customer

models:Product

ocapi ocapi:ocapi_methods

orders
orders:orderProductDetails

orders:productLineItem

product
product:components:bundledProduct

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

83/128

product:components:detailHeader

product:components:images

product:components:imageZoom

product:components:options

product:components:productBundleDetail

product:components:productDetail

product:components:productSetDetail

product:components:productSetDetailHeader

product:components:recommendations

product:components:setProduct

product:components:variationAttributeSwatches

product:components:variations

product:index

reports reports:index

request
request

request-response

search
search:components:attributesRefinementPanel

search:components:categoryGrid

search:components:categoryRefinementPanel

search:components:categoryTile

search:components:colorSwatchRefinement

search:components:listItemRefinement

search:components:mediumSwatchRefinement

search:components:productGrid

search:components:productTile

search:components:searchHeader

search:components:smallSwatchRefinement

search:index

storefront

support
support:appConfig

support:index

testing

utils
utils:DialogMgr

utils:dialogUtils

utils:EAUtils

utils:qrCodeGenerator

Related Links

Customize the Endless Aisle
App

Change the Look
of the Endless Aisle App

Setting Category Images
for the Endless Aisle Home Page

Enable Address Verification in
Endless Aisle

Customize Emails Sent by Endless
Aisle

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

84/128

Add Custom Data to Existing Models in Endless Aisle

Debug the Endless Aisle App

Running Endless Aisle in the Simulator

1.19.8. Running Commerce Cloud Endless Aisle in the Simulator

Before you can run the app, you must set up your development environment and Business Manager.

Note: If you make changes to the modules source code, build and update the modules in
the app before you run or deploy the simulator.

Follow the instructions for building on iOS simulator with Titanium CLI.

© Copyright 2000-2021, salesforce.com inc. All rights reserved. Various trademarks held by their respective owners. Show URL Submit Feedback Privacy Policy

1.20. Test the Commerce Cloud Endless Aisle App

The Endless Aisle app provides two types of testing:

Automated functional tests

To run automated functional tests of
the Endless Aisle app, you use Appium. Setting up Appium assumes that
you already have built an EndlessAisle.app file. You should have
already
successfully built the app and had it launch in the 10.1 iOS Simulator
on your development environment.

Model tests

Included with the app on the Admin Dashboard Test tab

Service level tests that test the OCAPI calls Endless Aisle
custom pipelines

To be able to conduct tests, the following must be true:

The customer site is set up and fully qualified

Project-specific hardware devices such as the Epson printer and the
iPad have been fully qualified by their manufacturers; necessary drivers
are installed and also bug-free

WiFi exists and is stable

Any functionality that has been modified in or added to the Endless
Aisle reference app is fully documented

Testing the Endless Aisle reference app includes the following types of
tests:

Exploratory testing - simultaneous test
design, execution and learning. While the testers are familiarizing
themselves with the project, they use exploratory testing to look for
emergent behaviors that could not have been predicted prior to the start
of testing

Unit testing - tests (usually written by
developers) to test classes, methods, or distinct units of source code,
which are most often run in a batch mode through scripts

Build acceptance/smoke testing - early
testability verification with each new deployment of the Endless Aisle
app builds to the QA test environment to detect gross flaws and to
establish confidence in the build through a relatively wide range of
tests, which can be executed quickly

GUI testing – executes each user action, such
as verifying required fields, data entry, shown error messages,
window resizing, that all labels and strings fit on the screen, that
text wraps where appropriate, that all information appears correctly on
the screen, that all buttons, drop-down lists, combo-boxes operate
correctly,to ensure that the user
interface provides the appropriate
access and navigation through the functions

Localization testing – verification that all
strings and messages that appear are correct, both grammatically as
well as in spelling and punctuation, that the language conforms
to the
Style Guide, and that any US locale settings work correctly across the
application

Workflow/usability testing – evaluation of
how a user moves from one action to another within the product, to
ensure that all the appropriate and required decisions are
presented to
the user and are made in the correct order

Feature/functional testing – verification of
the functionality within the application, based on the existing
functional and design specification documents that describe the
expected
behavior

Data verification/interoperability testing -
validation that the data written to the database and the data presented
to the user is correct where Endless Aisle has touch points
with
Commerce Cloud

System/integration testing - verification of
completeness of the application and the interactions of all components
among each other, which can't really be completed until
functional
testing is complete.; also known as end-to-end testing

Performance and stress testing – evaluation
of the speed at which the application responds to certain user actions,
which subjects the product to specific amounts of user
traffic within a
set time period to determine if limits are reached that cause the
software to fall below acceptable performance levels

High availability and failover testing –
testing that unexpected downtimes caused by disk crashes, power
failures, system crashes and any other hardware or software
malfunction
are handled in order to restore the last good state of the Endless Aisle
app; also testing network connection issues with a request that the app
can retry the
request and continue with the work flow

Security testing – assurance that
confidential data stays confidential and users can perform only those
tasks that they are authorized to perform.;in particular, security
testing
includes testing for prevention of URL manipulation through http
GET methods, SQL injection, cross-site scripting (XSSS), cross request
forgery (XRF), and so on

Regression testing – detection of backsliding
of functionality within the application by verifying that previously
fixed issues have not been re-broken by any recent product
changes and
re-verification that all features of the product work correctly

https://docs.axway.com/bundle/Titanium_SDK_allOS_en/page/titanium_cli_tasks.html#TitaniumCLITasks-iOSsimulator
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/https://www.salesforce.com/company/privacy/

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

85/128

You also want to test the
payment device.

In testing any modifications and additions to the Endless Aisle app
made by your organization, you might use any or all of these types of
tests.

Related Links

Set
Up Appium

Run Tests in
Appium

Modify
and Create Automated Tests

.

1.20.1. Set Up Appium

The Commerce Cloud Endless Aisle app is instrumented to use Appium to run automated tests.

To be able to run Appium to test the app:

Ensure that you are running.

Note: For specific versions, see the
README.md file in the Endless Aisle app code.

macOS X

XCode - Ensure you have the command line tools for XCode for the
OS you are running.

iOS Simulator

If you do have not already cloned the Endless-Aisle-Test repository
to your local machine, available on GitHub, clone it. Switch to the
appium16 branch by entering: git
checkout master. To
ensure you have the most recent updates enter: git
pull

To set up the tests and install Appium:

1. Rename Endless-Aisle-Test/tests/helpers/app.js.sample to
app.js.

2. Edit app.js to point to your app path.

3. Copy Endless-Aisle-Test/tests/package.json and paste it into your
top level home directory (/Users/<yourname>).

Note: If you are
using the desktop version, start the Appium server by launching the
desktop version and clicking Start Server.
With this method you need only one
open terminal.

4. In a terminal, enter the following: sudo npm cache clean
-f

5. If you need to install npm, enter sudo npm
install.

6. Make the directory where you copied package.json the current
directory.

7. In a terminal enter each of the following:

sudo npm install mochawesome-screenshots

sudo npm install -g n

sudo n 8.9.3

node -v

You should have 8.9.3
installed.

npm -v

You should have 4.0.0 or above
installed.

sudo npm install appium -g

sudo chmod 777 /var/db/lockdown

sudo npm install appium

appium -v

You should have Appium 1.6.3
installed.

sudo chown -R $USER /usr/local

cd
node_modules/appium/node_modules/appium-xcuitest-driver/WebDriverAgent/

8. If you don't already have Homebrew installed, enter:
/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

86/128

9. In a terminal, enter:

brew install carthage

./Scripts/bootstrap.sh -d

Note: For an alternative to installing Appium via the command line, go to
https://github.com/appium/appium-desktop/releases and download version
1.6.3 or above.

Related Links

Run Tests in Appium

Modify and Create Automated Tests

.

1.20.2. Run Tests in Appium

You must set up Appium before you can run automated tests.

1. Run the Commerce Cloud Endless Aisle app in Simulator 10.1.

2. Quit the simulator.

3. Open two terminal windows. One window is to start up the Appium
service, the other window is to run the tests. (In the first terminal
window you can type command-N to
open a second terminal window.)

4. In the first window, enter
appium and press Return. This
command starts the appium service. View the output in this terminal
window to review the console output from the
service.

5. In the second window, run a test command:

./node_modules/mocha/bin/mocha /Users/<yourname>/Documents/Endless-Aisle-Test/tests/EAA_smoke.js

Related Links

Set
Up Appium

Modify and Create Automated
Tests

© Copyright 2000-2021, salesforce.com inc. All rights reserved. Various trademarks held by their respective owners. Show URL Submit Feedback Privacy Policy

1.20.3. Modify and Create Automated Tests

To modify the data values passed into the test, edit the
Endless-Aisle-Test/tests/common/globals.js file. Update this file with
associate, catalog and customer data for your site. A good
place to start
with is to update the associate login_id and login_password for your
site.

To create new tests, you can use the eaa-test-template.js file as a
starting point.

In the common/features directory are helper files by feature, to let
you easily use these methods in your tests and reduce duplicity of
code.

For more details, see: The
Guide for Using Appium.

Related Links

Set
Up Appium

Run Tests in
Appium

.

1.21. Deploy the Commerce Cloud Endless Aisle App

You deploy the Endless Aisle app to devices in your organization.

For testing purposes, you can use over the air distribution, however, for production you use an MAM or MDM.

The steps to deploy include:

Apply for an
iOS Developer Enterprise Account

Set
Up the iOS Developer Enterprise Account

Install the
Certificate in the Keychain

Install the provisioning profile in the system profiles

Obtain an Indie license from Appcelerator to be able to deploy the
app

You can do development and testing without the license. See
http://www.appcelerator.com/pricing/ for details

http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/#
http://localhost:8080/jeDoc2/topic/com.demandware.dochelp/content/b2c_commerce/topics/dss/https://www.salesforce.com/company/privacy/
https://xchange.demandware.com/docs/DOC-40741

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

87/128

Create the .Ipa File

Create the
Manifest.Plist File

Deploy the app

Related Links

Apply for an iOS Developer Enterprise Account

Set Up the iOS Developer Enterprise Account

Install the Certi�cate in the Keychain

Create the .Ipa File

Create the Manifest.Plist File

1.21.1. Apply for an iOS Developer Enterprise Account
When you deploy the Commerce Cloud Endless Aisle app within your organization you do
not do so via the Apple App Store. Instead, you distribute it as an
in-house app. To do so
requires an iOS Developer Enterprise account.

To be eligible to apply for an iOS Developer Enterprise account, your
organization must have a D-U-N-S number. Dun & Bradstreet D-U-N-S
numbers are unique nine digit
identification numbers. If your organization
doesn’t already have a D-U-N-S number, you can apply for one online here:
http://fedgov.dnb.com/webform/pages/CCRSearch.jsp.

To sign up with Apple, go to their web site:
https://developer.apple.com/programs/ios/enterprise/

Before you can code sign your app, you create your development
certificate and later, a distribution certificate to submit your app to
the store.

For additional information, see Apple Developer License.

Related Links

Set Up the iOS
Developer Enterprise Account

Install the Certificate in
the Keychain

Create the
.Ipa File

Create
the Manifest.Plist File

.

1.21.2. Set Up the iOS Developer Enterprise Account

When your iOS Developer Enterprise account has been created, you then perform some setup steps, including:

Creating a production in-house certificate

Only a team agent or
admin can create a distribution certificate. You typically request
distribution certificates using the Xcode Preferences window. After the
certificate is
created, you install it in the keychain. For more
details, see
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/ConfiguringYourApp/ConfiguringYourApp.html#//apple_ref/doc/uid/TP400125
CH28-SW2

Creating an app ID

The iOS app ID uniquely identifies an
application with the Apple application services and lets you incorporate
them in your app. To create an app ID, you log in to the iOS Dev
Center
https://developer.apple.com/devcenter/ios/index.action. Under
Certificates, Identifiers & Profiles, click Identifiers and then
click + to begin the app ID creation process.
To prepare to deploy the
Commerce Cloud Endless Aisle app, you register a wildcard app ID.

Creating an in-house distribution profile

You distribute the
Endless Aisle app as an in-house app by using a third-party Mobile
Device Management solution. To create the profile, you log in to the
iOS Dev Center
https://developer.apple.com/devcenter/ios/index.action.
Click Certs, IDs & Profiles, click Profiles to begin the in-house
distribution profile creation process.

Related Links

Apply for an iOS Developer Enterprise Account

Install the Certi�cate in the Keychain

Create the .Ipa File

Create the Manifest.Plist File

.

1.21.3. Install the Certi�cate in the Keychain

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

88/128

1. On the Mac, in Applications, select Utilities >
Keychain Access.

2. From the Keychain Access menu, select Certificate
Assistant > Request a Certificate from a Certificate
Authority.

3. Enter your email, select Saved to Disk, and
click Continue

4. When your app is ready for distribution, go to the iOS Provisioning
Portal.

5. On the Distribution tab, click Request
Certificate, click Choose File,
specify the file that was created previously, and click
Submit.

6. Click Download and save the file.

7. Double-click the distribution_identity.cer file, which is in your
Downloads folder.

Related Links

Apply for an iOS Developer Enterprise Account

Set Up the iOS Developer Enterprise Account

Create the .Ipa File

Create the Manifest.Plist File

.

1.21.4. Create the .Ipa File

To deploy the app, you create an .ipa �le, which contains the app.

Follow the instructions for packaging an application on iOS ad hoc distribution with Titanium CLI.

Related Links

Apply for an iOS Developer Enterprise Account

Set Up the iOS Developer Enterprise Account

Install the Certi�cate in the Keychain

Create the Manifest.Plist File

.

1.21.5. Create the Manifest.Plist File

You create the manifest.plist �le. The manifest is an XML-based property list. It must contain six key/value pairs:

URL—a fully-qualified URL pointing to the ipa file

display-image—a fully-qualified URL pointing to a 57×57-pixel PNG
icon used during download and installation

full-size-image—a fully-qualified URL pointing to a 512×512-pixel
PNG (not JPEG!) image that represents the iTunes app

bundle-identifier—the app’s standard application identifier string,
as specified in the app’s tiapp.xml file

bundle-version—the app’s current bundle version string, as specified
in the app’s tiapp.xml file

title—a human-readable application name

Following is a sample manifest.plist file:

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<!-- array of downloads. -->
<key>items</key>
<array>

<dict>
<!-- an array of assets to download -->
<key>assets</key>
<array>

<!-- software-package: the ipa to install. -->
<dict>

<!-- required. the asset kind. -->
<key>kind</key>
<string>software-package</string>
<!-- optional. md5 every n bytes. -->
<!-- will restart a chunk if md5 fails. -->
<key>md5-size</key>
<integer>10485760</integer>
<!-- optional. array of md5 hashes -->
<key>md5s</key>

https://docs.axway.com/bundle/Titanium_SDK_allOS_en/page/titanium_cli_tasks.html#TitaniumCLITasks-Packageanapplication

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

89/128

<array>
<string>41fa64bb7a7cae5a46bfb45821ac8bba</string>
<string>51fa64bb7a7cae5a46bfb45821ac8bba</string>

</array>
<!-- required. the URL of the file to download. -->
<key>url</key>
<string>http://www.example.com/apps/foo.ipa</string>

</dict>
<!-- display-image: the icon to display during download. -->
<dict>

<key>kind</key>
<string>display-image</string>
<!-- optional. icon needs shine effect applied. -->
<key>needs-shine</key>
<true/>
<key>url</key>
<string>http://www.example.com/image.57×57.png</string>

</dict>
<!-- full-size-image: the large 512×512 icon used by iTunes. -->
<dict>

<key>kind</key>
<string>full-size-image</string>
<!-- optional. one md5 hash for the entire file. -->
<key>md5</key>
<string>61fa64bb7a7cae5a46bfb45821ac8bba</string>
<key>needs-shine</key>
<true/>
<key>url</key>
<string>http://www.example.com/image.512×512.jpg</string>

</dict>
</array><key>metadata</key>
<dict>

<!-- required -->
<key>bundle-identifier</key>
<string>com.example.fooapp</string>
<!-- optional (software only) -->
<key>bundle-version</key>
<string>1.0</string>
<!-- required. the download kind. -->
<key>kind</key>
<string>software</string>
<!-- optional. displayed during download; -->
<!-- typically company name -->
<key>subtitle</key>
<string>Apple</string>
<!-- required. the title to display during the download. -->
<key>title</key>
<string>Example Corporate App</string>

</dict>
</dict>

</array>
</dict>
</plist>

Related Links

Apply for an iOS Developer Enterprise Account

Set Up the iOS Developer Enterprise Account

Install the Certi�cate in the Keychain

Create the .Ipa File

1.22. Pairing the Payment Device with the iPad

These steps are not necessary if you are using Pay Through Web. You can pair an Adyen device or a Verifone device.

1. Log in to the app using the credentials of a manager or store
associate who can view the Admin Console.

2. Tap the Hamburger Menu icon and tap Admin
Dashboard.

3. Tap the Payment Terminal tab.

4. If you are using Verifone, specify:

Registart – Tap to enable encryption of data

Swipe Card – Tap to test card swipe functionality and view
results in the console

Manual Card – Tap to enter credit card information and view
results in the console

Console – Display results of card swipe or manual entry
test

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

90/128

Email – Send email with console contents to the addresses
specified in Business Manager

5. If you are using Adyen, specify:

Configuration –Select whether to connect via Bluetooth or
Ethernet

Enter Adyen credentials – Credentials to log in to the Adyen
portal

Login – Log in to the Adyen portal

Logout – Log out of the Adyen portal

Device – Lists available Adyen devices

Board – Enabled when you select an available Adyen
device

Remove All Ethernet Devices – Enabled when ethernet devices
are boarded

1.23. Pairing Printer with iPad

1. Log in to the app using the credentials of a manager or store
associate who can view the Admin Console.

2. Tap the Hamburger Menu icon and tap Admin
Dashboard.

3. Tap the Receipt Printer tab.

4. Specify whether to connect using Ethernet or Bluetooth.

5. For an Ethernet connection, specify the IP address of the
subnet.
The final number must be 0, for example, 123.123.123.0.

6. Tap Save.

7. Specify the font size.
Generally, because receipt paper is wide or narrow, you want to
specify Large for wide paper and Small for narrow paper. If you
specify Large for narrow paper, the text wraps.

8. Select the language to print.
Usually, you specify ank, which is English.

1.24. Run the Commerce Cloud Endless Aisle App in Kiosk Mode

Endless Aisle supports setting up and running the app in a kiosk. By
design, kiosk mode provides a limited subset of Endless Aisle app
functionality, including:

Starting the app by touching the screen, without having to log
in

Viewing the home page

Scanning barcodes

Browsing, searching for, filtering, and sorting products

Viewing product details, descriptions, recommendations, and
inventory in surrounding stores

Adding items to the shopping cart

Checking out: providing a shipping address, billing address, and
payment information.

When a store associate is logged in, overrides and order search

Setting up your development environment is the same for kiosk mode as
for when you intend to deploy on a device such as an iPad.

In addition to the steps to set up Business Manager for deploying the
app on a device, to deploy in kiosk mode, you also:

Create the kiosk permission group

Create a user whose only permission group is the kiosk permission
group

Use the store preferences if you only want kiosk for a particular
store and not others

Use site preferences to set up kiosk user for all stores​

See Setting Up Endless
Aisle to Run in Kiosk Mode.

Create the Kiosk Permission Group

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

91/128

The kiosk
permission group limits the functionality that is available in the Endless
Aisle app. Doing so ensures that customers who use the app don't have
access to features that are
not appropriate and that could expose data
that customers shouldn't access. Use our out of the box permission group
(Kiosk - ki-mde) or, if you don't have that, you can create the
custom
object

1. In Business Manager, select site > Merchant Tools
> Custom Objects > Custom Object Editor.

2. In the Type drop-down, select
permissionGroup.

3. Click New.

4. Enter the permission group id and group name. No permissions
should be selected for a kiosk mode user.

5. Click Apply.

Add an Associate to the Kiosk Permission Group

1. Follow the steps in Creating,
Assigning, Modifying Endless Aisle Store Associates

2. Select the kiosk permission group you created or ki-mde.

Running the App in Kiosk Mode

To run the app in
kiosk mode, when the app starts for the first time, enable kiosk mode on
the Welcome to Endless Aisle screen. To have the Welcome screen appear on
app startup,
in the Admin Dashboard, on the App Settings tab enable or
disable Kiosk Mode.

When the app is running in kiosk mode, a store
manager or associate with appropriate permissions can log in to the app to
perform price and shipping overrides or acces the Admin
Dashboard. To do
so, swipe left the navigation bar, tap the associate icon, and enter login
credentials.

1.25. Commerce Cloud Endless Aisle Device Logs

Logs that are created during a session are now stored and available on
the server in addition to being available in the app on the iPad. If there
is an error or issue, especially during
payment, you can get as many
details as possible to understand what has happened.

To access the logs:

1. In Business Manager, select Administration > Site
Development > Development Setup.

2. Under WebDAV Access, under Import/Export, click the link, which ends
with webdav/Sites/Impex.

3. Under Filename, click src > ealogs.

To limit the number of logs that are stored on the server, you can
archive logs. You can also clean up the logs.

To download the jobs to archive or clean up logs:

1. In Business Manager, select Administration >
Operations > Import/Export.

2. Under Import & Export Files, click
Upload.

3. Select
Instore-Service-Ext/int_ocapi_ext_core/config/EndlessAisleJobs.xml.

4. Click Upload.

5. In Business Manager, select Administration >
Operations > Import & Export.

6. Select EndlessAisleJobs.xml and click
Next.

7. After the file validation completes, check
REPLACE.

8. Click Import.

To archive or delete the logs, you schedule jobs in Business
Manager:

1. Select Administration > Operations > Job
Schedules.

2. Do one of the following:

To archive logs, search for
archive_endless_aisle_device_logs.

To delete old logs, search for
clean_up_endless_aisle_device_logs.

3. To run the job immediately, click Run.

4. To schedule the job to run, click
Enable.

5. To change when the job runs:

Click the job name.

Click the Schedule & History
tab.

Enter the start and end date for when the job should run.

Select the interval to specify how often the job should
run.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

92/128

6. Adjust any custom parameters for the log configuration on the Step
Configurator tab. Set the ADMIN_EMAILS if you want to receive email
notification of upcoming archive
deletions.

For archive_endless_aisle_device_logs job select
Archive Endless Aisle device logs to set:

EA_LOG_FILES_QUOTA, (default: 200) number of log files to
build up before archiving all files (to a maximum of 500
files)

For clean_up_endless_aisle_device_logs job select
Clean up Endless Aisle device logs to set:

ARCHIVE_LIFETIME_IN_DAYS, (default: 30) days to keep around
the archives

TIME_TO_NOTIFY_IN_DAYS, (default: 7) number of days to
notify the user before the files are removed

ADMIN_EMAILS, (no default) email addresses to send the
notification of impending deletion, use comma separator

SERVER_HOSTNAME, (no default) the hostname of the server on
which the job is running

.

1.26. Storefront API Reference

The Commerce Cloud Endless Aisle reference app relies on Storefront APIs. In many
cases, the APIs provide functionality that isn't applicable to or extends
OCAPI. Endless Aisle uses
Storefront APIs in addition to, not instead of
OCAPI.

Deprecated Storefront
APIs

Storefront API
Calls

.

1.26.1. Deprecated Storefront APIs

The following APIs have been deprecated:

EAAccount-CheckEmailAddress

EAAccount-DeleteAddress

EAAccount-GetPreferredID

EAAccount-ResetPassword

EAAccount-SaveAddress

EAAccount-SendNewAccountEmail

EACheckout-SyncBasket

EACheckout-UpdateOrderwithCustomer

EACheckout-UpdateProductLIneItem

EAOrder-ReplaceBasket

EAOverride-ProductPrice

EAOverride-ShippingPrice

EAProduct-GetProductInfo

EARecommendation-GetRecommendations

EAStore-Details

EAStore-SessionKeepAlive

EAStore-SitePreferences

1.26.2. Storefront API Calls

Both Storefront and OCAPI calls are made by the Commerce Cloud Endless Aisle app.
Because of the logical workflows inherent in the app, certain calls must
be made before other
calls. The following diagrams illustrate the calls
made in App startup/logn, products, customer, cart, checkout, and
payment.

App Startup and Login
app startup /
welcome

EAStore-GetCountriesStates

EAStore-ValidateDevice

EAConfigs-GetCFGSettings

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

93/128

associate login

EAAccount-AgentLogin

EAAccount-SetDataOnNewSession

[ocapi] baskets [POST]

EAConfigs-GetCFGSettings

[ocapi] stores [GET]

[ocapi] product_search [GET]

[ocapi] categories/root [GET]

forgot password (with manager approval)

EAAccount-AgentLogin

EAAccount-SetDataOnNewSession

EAAccount-ValidateAssociateExists

EAAccount-ChangePassword

EAAccount-AgentLogout

associate logout

[ocapi] baskets [DELETE]

EAAccount-AgentLogout

EAConfigs-GetCFGSettings

Sales Dashboard

view sales

EAReports-Sales

EAReports-ItemsSold

EAReports-AssociateRanking

EAReports-StoresRanking

Products

search for products | select category |
filter products

[ocapi] product_search [GET]

product detail page

[ocapi] products [GET]

[ocapi] categories [GET]

add to cart

[ocapi] products [GET]

[ocapi] baskets [POST]

[ocapi] products [GET]

Customer

create account

[ocapi] customers [GET]

EAAccount-AgentLogin

EAAccount-SetDataOnNewSession

search for customer

EAAccount-Search

shop on behalf of customer

EAAccount-AgentLogin

EAAccount-SetDataOnNewSession

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

94/128

EAAccount-LoginOnBehalf

[ocapi] customers [GET]

EAAccount-CreateBasket
(Not Always Called)

[ocapi] customers [GET]

[ocapi] baskets [PUT]

view customer profile

EAAccount-AgentLogin

EAAccount-SetDataOnNewSession

[ocapi] customers [GET]

[ocapi] baskets [GET]

[ocapi] baskets [PUT]

edit customer profile

[ocapi] customers [PATCH]

add new customer address | edit customer address | delete
customer address

[ocapi] customers [GET]

[ocapi] customers [PATCH]

[ocapi] customers [GET]

view customer order history

EAOrder-OrderHistory

view order details

[ocapi] orders [GET]

Cart

save product for later

[ocapi] baskets [DELETE]

[ocapi] baskets [POST]

clear cart

EAAccount-AgentLogin

EAAccount-SetDataOnNewSession

[ocapi] baskets [DELETE]

[ocapi] baskets [POST]

edit product in cart

[ocapi] products [GET]

[ocapi] products [GET]

[ocapi] products [GET]

[ocapi] products [GET]

[ocapi] baskets [PATCH]

override product price

[ocapi] products [GET]

[ocapi] products [GET]

[ocapi] baskets [PATCH]

move from saved cart to cart

[ocapi] baskets [POST]

[ocapi] baskets [DELETE]

add product to wish list

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

95/128

[ocapi] customers [POST]

[ocapi] products [GET]

email wish list

EAAccount-EmailProductList

Checkout

checkout

[ocapi] customers [GET]

shipping address

[ocapi] baskets [PUT]

[ocapi] basket [PATCH]

billing address (only when enabled)

EAStore-ValidateDevice

[ocapi] customers [GET]

[ocapi] baskets [PUT]

[ocapi] baskets [PATCH]

add address

[ocapi] baskets [PUT]

[ocapi] customers [POST]

[ocapi] baskets [PATCH]

ship methods

[ocapi] baskets [PUT]

[ocapi] baskets [PATCH]

[ocapi] baskets [PUT]

[ocapi] baskets [POST]

shipping price override

[ocapi] baskets [PUT]

create order

[ocapi] baskets [PATCH]

[ocapi] baskets [POST]

pay partial balance with gift card (capture all Payment
Instruments and Perform Auths in one final call (B))

EACheckout-GiftCardBalance

EACheckout-AuthorizeGiftCard

pay with credit card (capture all Payment Instruments and
Perform Auths in one final call (B))

EACheckout-AuthorizeCreditCard

EAUtils-GetAuthenticationToken

[ocapi] baskets [POST]

[ocapi] baskets [PUT]

[ocapi] orders [GET]

remove credit card (capture all Payment Instruments and Perform
Auths in one final call (B))

EACheckout-RemoveCreditCard

pay with gift card and credit card (perform Auths as payments
are entered/captured (A))

[ocapi] baskets [PATCH]

[ocapi] baskets [PUT]

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

96/128

[ocapi] orders [POST]

EAStore-ValidateDevice

EACheckout-GiftCardBalance

EACheckout-ApplyGiftCard

EACheckout-ApplyCreditCard

remove gift card

EACheckout-RemoveGiftCard

pay through web

[ocapi] baskets [PATCH]

[ocapi] orders [POST]

EACheckout-StoreWebOrder

EACheckout-StartWebPayment

EAStore-ValidateDevice

[ocapi] baskets [POST]

[ocapi] baskets [PUT]

[ocapi] orders [GET]

cancel order

EACheckout-AbandonOrder

[ocapi] baskets [POST]

[ocapi] baskets [PATCH]

[ocapi] baskets [PUT]

signature

EAOrder-SaveSignature

email receipt

EAOrder-SendEmail

create account

[ocapi] customers [POST]

EAAccount-AgentLogin

EAStore-ValidateDevice

EAAccount-SetDataOnNewSession

.

1.26.3. EAAccount-AgentLogin

Fetches the store ID from the session.

Checks the store associate authorization.

Fetches and validates the store’s Business Manager credentials for
login on behalf from the session.

If the store Business Manager credentials are invalid, marks the
store credentials as invalid. Both the store associate authorization and
the store Business Manager credentials
must be valid for a successful
Output Parameters.

Username and password are the store (login agent) credentials that
are set up as Business Manager credentials. There is one set of
credentials per store. The Commerce Cloud
Endless Aisle reference app saves this
information in the app's preferences.

Location

Pipeline: EAAccount

Sub-pipeline:
AgentLogin

ISML (JSON Output Parameters): Output
Parameters/eaagentloginjson.isml

Type

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

97/128

POST

Input Parameters

employee_id

passcode

Output Parameters (Success)

permissions

allowItemPriceOverrideByAmount

allowItemPriceOverrideByPercent

allowItemPriceOverrideFixedPrice

allowLOBO

allowShippingOverrideByAmount

allowShippingOverrideByPercent

allowShippingOverrideFixed

itemPriceOverrideMaxPercent

shippingPriceOverrideMaxPercent

allowManagerOverrides

allowLOBO

associateInfo

firstName

lastName

permissionGroupId

Output Parameters (Error)

type

message

description

1.26.4. EAAccount-AgentLogout

Calls the bc_api LogoutAgentUser pipelet, which causes the system to
log out any associate who is currently logged in.

Location

Pipeline: EAAccount

Sub-pipeline: AgentLogout

ISML (JSON Output Parameters)): Output Parameters/eaagentloginjson.isml

Type

POST

Input Parameters

none

Output Parameters (Success)

httpStatus

1.26.5. EAAccount-ChangePassword

Changes the password of the given associate to the supplied
password.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

98/128

Location

Pipeline: EAAccount

Sub-pipeline:
ChangePassword

ISML (JSON Output Parameters): Output
Parameters/eaagentloginjson.isml

Type

POST

Input Parameters

employee_id

new_password

store_id

Output Parameters (Success)

httpStatus

1.26.6. EAAccount-CreateBasket
Creates a basket for a customer that doesn't already have a
basket.

Location

Pipeline: EAAccount

Sub-pipeline:
CreateAccount

ISML (JSON Output Parameters): Output Parameters
responses/json.isml

Type

POST

Input Parameters

customer_no

email

customer_name

Output Parameters (Success)

httpStatus

status

1.26.7. EAAccount-EmailProductList

Sends email to the specified email address.

The email contains a link to the Wish List.

Location

Pipeline: EAAccount

Sub-pipeline:
EmailProductList

ISML (JSON Output Parameters): Output Parameters
responses/eajson.isml

Type

POST

Input Parameters

productListId

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

99/128

senderEmail

senderName

receiverEmail

Output Parameters

httpStatus

message

1.26.8. EAAccount-GetPermissions

Gets permissions for the specified store associate.

Location

Pipeline: EAAccount

Sub-pipeline:
GetPermissions

ISML (JSON Output Parameters): Output
Parameters/eaagentloginjson.isml

Type

POST

Input Parameters

employee_id

passcode

Output Parameters (Success)

httpStatus

status

permissions

allowItemPriceOverrideByAmount

allowItemPriceOverrideByPercent

allowItemPriceOverrideFixedPrice

allowLOBO

allowShippingOverrideByAmount

allowShippingOverrideByPercent

allowShippingOverrideFixed

itemPriceOverrideMaxPercent

shippingPriceOverrideMaxPercent

allowLOBO

associateInfo

firstName

lastName

permissionGroupId

.

1.26.9. EAAccount-LoginOnBehalf

Validates store associate authorization.

Logs in on behalf of the customer.

Location

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

100/128

Pipeline: EAAccount

Sub-pipeline:
LoginOnBehalf

ISML (JSON Output Parameters): Output
Parameters/eacustomerloginjson.isml

Type

POST

Input Parameters

login

Output Parameters (Success)

httpStatus

customer_no

customer_firstname

customer_lastname

customer_email

customer_phone

addresses

default_address

address_id

address1

address2

city

state_code

postal_code

country_code

.

1.26.10. EAAccount-Search

Validates the store associate authorization.

If authorized, performs the search for the customer.

Returns only the parameters in the Output Parameters.

Location

Pipeline: EAAccount

Sub-pipeline:
Search

ISML (JSON Output Parameters): Output
Parameters/easearchcustomerjson.isml

Type

POST

Input Parameters

email

firstname

lastname

Output Parameters (Success)

httpStatus

customers

customer_no

customer_firstname

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

/ pi 101/128

customer_lastname

customer_login

customer_email

customer_phone

addresses

address_id

address1

address2

city

state_code

postal_code

country_code

.

1.26.11. EAAccount-SetDataOnNewSession

Sets the associate data on the session, including the employee ID,
store ID, whether the associate can log in on behalf of a customer, and
what permission group the associate
belongs to.

Location

Pipeline: EAAccount

Sub-pipeline:
SetDataOnNewSession

ISML (JSON Output Parameters): Output
responses/eaagentloginjson.isml

Type

POST

Input Parameters

employeeId

storeId

allowLOBO

permissionGroupId

Output Parameters (Success)

httpStatus

1.26.12. EAAccount-ValidateAssociateExists

Checks the ensure that the associate exists.

Location

Pipeline: EAAccount

Sub-pipeline:
ValidateAssociateExists

ISML (JSON Output Parameters): Output
responses/eaagentloginjson.isml

Type

POST

Input Parameters

employee_id

store_id

()

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

102/128

Output Parameters (Success)

httpStatus

1.26.13. EACheckout-AbandonOrder

Cancels the order if the order is in the "created" state.

Calls the Failed Order pipelet.

Gets a handle to the basket object again.

Location

Pipeline:
EACheckout

Sub-pipeline: AbandonOrder

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

order_no

Output Parameters (Success)

httpStatus

order_no

creation_date

confirmation_status

orderDiscounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

price_override

previous_basket

shipments

id

shipping_address

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

103/128

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

.

1.26.14. EACheckout-ApplyCreditCard

Passes the encrypted credit card data to the decryption service
provider.

If the decryption service provider is connecting to the payment
gateway or processor, it captures from the service provider: the
authorization code; the last four digits of the
credit card; the
expiration date; any additional required information.

If the decryption service provider isn't connecting to the payment
gateway or processor, it captures from the service provider the clear
text credit card number and expiration
date, and passes that information
to the payment gateway for authorization.

Saves the relevant payment information.

Location

Pipeline:
EACheckout

Sub-pipeline: ApplyCreditCard

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

104/128

track_1

track_2

order_no

Output Parameters

httpStatus

order_no

creation_date

confirmation_status

orderDiscounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

price_override

previous_basket

shipments

id

shipping_address

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

105/128

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

payment_details

status

credit_card_holder_name

require_signature - Not included for gift card payment

last_four_digits

masked_number

exp_month - Not included for gift card payment

exp_yr - Not included for gift card payment

credit_card_type - Not included for gift card payment

amt_auth

payment_method

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

.

1.26.15. EACheckout-ApplyGiftCard

Applies gift card balance amount to the basket.

Saves the relevant payment information.

Location

Pipeline:
EACheckout

Sub-pipeline: ApplyGiftCard

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

track_1

track_2

redeem_amount

order_no

Output Parameters

httpStatus

order_no

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

106/128

creation_date

confirmation_status

orderDiscounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

price_override

previous_basket

shipments

id

shipping_address

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

107/128

state_code

postal_code

country_code

payment_details

status

credit_card_holder_name

require_signature - Not included for gift card payment

last_four_digits

masked_number

exp_month - Not included for gift card payment

exp_yr - Not included for gift card payment

credit_card_type - Not included for gift card payment

amt_auth

payment_method

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

.

1.26.16. EACheckout-AuthorizeCreditCard

Passes the encrypted credit card data to the decryption service
provider.

If the decryption service provider is connecting to the payment
gateway or processor then captures (from the service provider) the
authorization code, last four digits of credit
card, expiration date and
any additional information as required.

If the decryption service provider isn't connecting to the payment
gateway or processor, then captures (from the service provider) the
clear text credit card number and
expiration date, and passes that
information to the payment gateway for authorization.

Saves the relevant payment information.

Checks if the there is any payment due.

If no payment due then post processes the order.

If the authorization amount isn't passed, the balance amount is
applied to the credit card.

Location

Pipeline:
EACheckout

Sub-pipeline: AuthorizeCreditCard

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

order_no

track_1

track_2

auth_amount

Output Parameters

httpStatus

order_no

creation_date

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

108/128

confirmation_status

orderDiscounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

bundled_product_items

product_id

item_text

quantity

product_name

product_id

item_text

quantity

product_name

option_items

option_id

options_value_id

item_text

quantity

base_price

price

price_override

previous_basket

shipments

id

shipping_address

first_name

last_name

postal_code

address1

city

country_code

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

109/128

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

payment_details

status

credit_card_holder_name

require_signature - Not included for gift card payment

last_four_digits

masked_number

exp_month - Not included for gift card payment

exp_yr - Not included for gift card payment

credit_card_type - Not included for gift card payment

amt_auth

payment_method

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

1.26.17. EACheckout-AuthorizeGiftCard

Applies the gift card balance amount to the basket.

Saves the relevant payment information.

Check to see if the there is any payment due.

If no payment due, post processes the order.

Location

Pipeline:
EACheckout

Sub-pipeline: AuthorizeGiftCard

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

110/128

Type

POST

Input Parameters

order_no

track_1

track_2

redeem_amount

Output Parameters

httpStatus

order_no

creation_date

confirmation_status

orderDiscounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

bundled_product_items

product_id

item_text

quantity

product_name

product_id

item_text

quantity

product_name

option_items

option_id

options_value_id

item_text

quantity

base_price

price

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

111/128

price_override

previous_basket

shipments

id

shipping_address

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

payment_details

status

credit_card_holder_name

last_four_digits

masked_number

amt_auth

payment_method

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

.

1.26.18. EACheckout-AuthorizePayment

Loops through payment instruments.

Authorizes each payment instrument/method.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

112/128

Captures authorization numbers for each payment method.

Saves the authorization details in the order.

Marks the order as "New".

Returns the order information and prompts for signature
capture.

Location

Pipeline:
EACheckout

Sub-pipeline: AuthorizePayment

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

order_no

Output Parameters

httpStatus

order_no

creation_date

confirmation_status

order_status

orderDiscounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

bundled_product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

113/128

price_override

previous_basket

shipments

id

shipping_address

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

payment_details

status

credit_card_holder_name

require_signature - Not included for gift card payment

last_four_digits

masked_number

exp_month - Not included for gift card payment

exp_yr - Not included for gift card payment

credit_card_type - Not included for gift card payment

amt_auth

payment_method

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

114/128

1.26.19. EACheckout-GiftCardBalance

Passes the encrypted gift card data to the decryption service
provider.

Calls the decryption service provide to decrypt the encryted gift
card number.

Calls the gift card service provider to get the balance available on
the gift card.

Saves the relevant gift card information.

Location

Pipeline:
EACheckout

Sub-pipeline: GiftCardBalance

ISML (JSON Output
Parameters): Output Parameters/eagiftcardbalancejson

Type

POST

Input Parameters

track_1

track_2

Output Parameters

httpStatus

currency

balance_available

gift_card_balance

masked_gift_card_code

.

1.26.20. EACheckout-RemoveCreditCard

Removes the credit card payment method.

Removes last four digits of credit card.

Performs authorization reversal.

Location

Pipeline:
EACheckout

Sub-pipeline: RemoveCreditCard

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

order_no

credit_card_last_four

Output Parameters

httpStatus

order_no

creation_date

confirmation_status

order_discounts

currency

product_sub_total

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

115/128

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

price_override

previous_basket

shipments

id

shipping_address

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

approaching_order_promotions

approaching_shipping_promotions

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

116/128

customer_name

customer_email

anonymous

authenticated

1.26.21. EACheckout-RemoveGiftCard

Removes the gift card payment method.

Location

Pipeline:
EACheckout

Sub-pipeline: RemoveGiftCard

ISML (JSON Output
Parameters): Output Parameters/eabasketjson.isml

Type

POST

Input Parameters

order_no

gift_card_last_four

Output Parameters

httpStatus

order_no

creation_date

confirmation_status

order_discounts

currency

product_sub_total

product_total

shipping_total

shipping_total_excluding_discount

shipping_discount

shipping_total_base_price

tax_total

order_total

payment_balance

product_items

product_id

item_text

quantity

product_name

base_price

base_price_override

price

thumbnailUrl

price_override

previous_basket

shipments

id

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

117/128

shipping_address

first_name

last_name

postal_code

address1

city

country_code

state_code

phone

shipping_method

id

name

price_override

description

customer_info

email

billing_address

full_name

first_name

last_name

address_id

address1

city

state_code

postal_code

country_code

approaching_order_promotions

approaching_shipping_promotions

customer_name

customer_email

anonymous

authenticated

1.26.22. EACheckout-StartWebPayment

Gets the current order.

Shows the web payment form, which is hosted from the
storefont.

Confirms the order.

Returns to the Commerce Cloud Endless Aisle app.

Location
Pipeline:
EACheckout

Sub-pipeline: StartWebPayment

ISML (JSON Output
Parameters): Output webpayment/redirectToApp

Type

GET

Input Parameters

order_no

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

118/128

token

Output Parameters

none

1.26.23. EACheckout-StoreWebOrder

Stores the order number in a custom object keyed off a one time use
token.

Location

Pipeline:
EACheckout

Sub-pipeline: StoreWebOrder

ISML (JSON Output
Parameters): responses/eajason

Type

GET

Input Parameters

order_no

token

Output Parameters

httpStatus.

1.26.24. EACon�gs-GetCFGSettings

Gets configuration settings for the store.

Location

Pipeline: EAConfigs

Sub-pipeline:
GetCFGSettings

ISML (JSON Output Parameters): Output
Parameters/response/json

Type

GET

Input Parameters

store_id

Output Parameters

admin_email

allow_gift_message

analytics:

event_dispatch_delay

dispatch_interval

dispatch_type

enabled

category:

attribute_show_in_dss

size_chart_attribute

size_chart_css_attribute

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

119/128

devices

check_device_connected_interval

check_device_dialog_interval

verify_payment_terminal_connection_at_checkout

verify_payment_terminal_connection_at_login

collect_billing_address

product

color_attribute

filterUnorderableVariants

filterUnorderableVariationValues

ratings

attribute_name

max_rating

recommendations

enabled

size_attribute

image_service

dynamic_size

altImages

altZoomImages

bundleProductImages

cart

categoryTile

heroImage

largeAltZoomImages

setProductImages

productTile

view_type

altImages

altZoomImages

bundleProductImages

cart

categoryTile

heroImage

largeAltZoomImages

productTile

setProductImages

swatchImages

type

error_reporting

email_ignore

js_crash_reporting

ocapi_error_reporting

storefront_error_reporting

show_forgot_password_link

gift_cards_available

enable_zoom_image

kiosk_mode

enable_cart

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

120/128

order_complete_reset_delay

password

username

enable_multi_tender_payments

payment

nfc_signature_threshold_amount

swipe_signature_threshold_amount

ocapi

timeout

payment_process_flow

price_book

receipt_qrcode_url

printer_availability

product_override_reasons

overrides

product_price_overrides

shipping_price_overrides

sales_reports

charts

associate_level_privileges

items_sold

ranks

store_level_privileges

items_sold

ranks

url_page_names

ranks

associates

stores

items_sold

sales

page_load_tries

start_of_week

store_availability

max_distance_search

enabled

distance_unit

session_keep_alive

session_timeout

session_timeout_dialog_display_time

ship_to_store

enabled

free_shipping_ids

shipping_override_reasons

storefront

timeout

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

121/128

1.26.25. EAOrder-OrderHistory

Returns an array of what you have as the result.

Location

Pipeline: EAOrder

Sub-pipeline:
OrderHistory

ISML (JSON Output Parameters): Output
Parameters/json/eaorderhistory.isml

Type

GET

Input Parameters

customer_email

Output Parameters

currency

product_sub_total

product_total

shipping_total

tax_total

order_total

loyalty_number

product_items

product_id

item_text

quantity

product_name

base_price

price

previous_basket

shipping_address

address_id

address1

address2

city

state_code

postal_code

country_code

payment_details

status

last_four_digits

exp_month

exp_yr

amt_auth

.

1.26.26. EAOrder-SaveSignature

Saves the customer signature to the IMPEX directory
"signatures."

Location

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

122/128

Pipeline: EAOrder

Sub-pipeline:
SaveSignature

ISML (JSON Output Parameters):
responses/easignaturesavedjson.isml

Type

POST

Input Parameters

filename

Output Parameters

httpStatus

signature_saved

1.26.27. EAOrder-SendEmail

Emails the order confirmation to the email address provided.

Location

Pipeline: EAOrder

Sub-pipeline:
SendEmail

ISML (JSON Output Parameters): Output
Parameters/eaemailsentjson.isml

Type

POST

Input Parameters

order_no

Output Parameters

httpStatus

email_sent

1.26.28. EAReports-AssociatesRanking

Gets the associates' sales data for the specified date range.

Location

Pipeline: EAReports

Sub-pipeline:
AssociatesRanking

Type

GET

Input Parameters

dateFrom

dateTo

storeId

employeeId

Output Parameters

httpStatus (if error)

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

123/128

html (if successful)

1.26.29. EAReports-ItemsSold

Gets the items sold sales data for the specified date range, for the
specified store or associate.

Location

Pipeline: EAReports

Sub-pipeline:
ItemsSold

Type

GET

Input Parameters

dateFrom

dateTo

storeId

employeeId

Output Parameters

httpStatus (if error)

html (if successful)

.

1.26.30. EAReports-Sales

Gets the sales data for the specified date range, for the specified
store or associate.

Location

Pipeline: EAReports

Sub-pipeline:
Sales

Type

GET

Input Parameters

dateFrom

dateTo

storeId

employeeId

loadEmployeeList

Output Parameters

httpStatus (if error)

html (if successful)

1.26.31. EAReports-StoresRanking

Gets the sales data for the specified date range, for the specified
stores.

Location

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

124/128

Pipeline: EAReports

Sub-pipeline:
StoresRanking

Type

GET

Input Parameters

dateFrom

dateTo

storeId

Output Parameters

httpStatus (if error)

html (if successful)

© Copyright 2000-2021,

1.26.32. EAStore-GetCountriesStates

Returns the list of states for the current site.

This is only to keep the WebStorefront in sync the Commerce Cloud Endless Aisle
app.

The current implementation only supports US and Canadian states.
Other countries can be added by enhancing the 'states.xml' form on the
server.

Location

Pipeline: EAStore

Sub-pipeline:
GetCountriesStates

ISML (JSON Output Parameters): Output
Parameters/countriesstatesjson.isml

Type

GET

Input Parameters

none

Output Parameters

httpStatus

countries

US - United States

states

AL

...

WY

AE - Armed Forces Africa

AA - Armed Forces America (exc. Canada)

AE - Armed Forces Canada

AE - Armed Forces Europe

AE - Armed Forces Middle East

AP - Armed Forces Pacific

DE - Germany

CA - Canada

states

AB - Alberta

AB - Alberta

MB - Manitoba

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

125/128

NB - New Brunswick

NL - Newfoundland and Labrador

NT - Northwest Territories

NS - Nova Scotia

NU - Nunavut

ON - Ontario

PE - Prince Edward Island

QC - Quebec

SK - Saskatchewan

YT - Yukon

1.26.33. EAStore-ValidateDevice

Calls the device validation service to pass the following
information:

For iPad: serial number & IMEI

For the card reader: serial number

Performs the following for the store:

Checks that the store exists.

Checks that the store credentials are valid.

Sets the store ID and device status in the session, which is used by
subsequent API calls to validate the API calls.

Location

Pipeline: EAStore

Sub-pipeline:
ValidateDevice

ISML (JSON Output Parameters): Output
Parameters/eavaliddevicejson.isml

Type

POST

Input Parameters

tablet_serial_number

card_reader_serial_number

store_id

Output Parameters

Success:

httpStatus

valid_device

Error:

httpStatus

fault

type

message

description

1.26.34. EAUtils-GetAuthenticationToken

Requests an OAuth token, which is used for authentication and
authorization.

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

126/128

Location

Pipeline: EAUtils

Sub-pipeline:
GetAuthenticationToken

ISML (JSON Output Parameters): Output
responses/json

Type

POST

Input Parameters

hostname

Output Parameters

access_token

expires_in

token_type

.

1.26.35. Verifone-DecryptTrackData

Calls the Verifone decryption service to decrypt track data. Called
as a result of swiping the card.

Location

Pipeline: Verifone

Sub-pipeline:
DecryptTrackData

Type

POST

Input Parameters

track_1

track_2

terminal_id

Output Parameters

Success:

DecryptedT1

DecryptedT2

Error

type

message

description

1.26.36. Verifone-ActivateDevice

Used to registart each Verifone device to register the Verifone
device for encryption. Looks at the response from Verifone and checks
for result = 905.

Location

Pipeline: Verifone

Sub-pipeline:
ActivateDevice

Type

POST

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

127/128

Input Parameters

track_1

track_2

terminal_id

Output Parameters

Success:

DecryptedData

Error

type

message

description

1.26.37. Verifone-DecryptCardData

Calls the Verifone decryption service to decrypt card data. Called
as a result of manually entering card number and expiration.

Location

Pipeline: Verifone

Sub-pipeline:
DecryptCardData

Type

POST

Input Parameters

track_1

track_2

terminal_id

expire_date

pan

Output Parameters

Success:

DecryptedExp

DecryptedPan

Error

type

message

description

1.27. Endless Aisle and iOS 15

Endless Aisle is at End of Support. The final version of Endless Aisle supports iOS 14.4.

If you intend to use Endless Aisle on a iOS 15 iPad device, you need to upgrade versions of the supporting software to the current version, and make modifications to the code as
required.

After you install iOS 15 on an iPad device, the Endless Aisle app no longer launches and you
this error displays.

Endless Aisle PW
Needs to be Updated

10/3/21, 6:11 PM Commerce Cloud Endless Aisle 2.5.4

128/128

The developer of this
app needs to update

it to work with the
version of iOS.

Why is This Happening?

The Endless Aisle app is built with Xcode 10. The signature is not compatible with iOS15.

Console Log Errors

[com.demandware.endlessaisleverifone - signature state: Signature Version Unsupported,
reason: Signature version no longer supported

Attempted to launch an untrusted application
scene sceneID:com.demandware.endlessaisleverifone-default

Solution

This solution is to upgrade Mac OS, Xcode and Appcelerator (and it’s newer requirements, including node) to the latest versions. This will require building the modules and app code,
which may involve fixing errors during the build and updating version in configuration files.

© Copyright 2000-2021, salesforce.com inc. All rights reserved. Various trademarks held by their respective owners.

	commercecloudendlessaisle.pdf
	creating a BM user foreach store for Endless Aisle.

